Z4+uZ4上一类重根常循环码

李兰强,刘丽

系统科学与数学 ›› 2017, Vol. 37 ›› Issue (3) : 870-881.

PDF(334 KB)
PDF(334 KB)
系统科学与数学 ›› 2017, Vol. 37 ›› Issue (3) : 870-881. DOI: 10.12341/jssms13110
论文

Z4+uZ4上一类重根常循环码

    李兰强,刘丽
作者信息 +

A Family of Repeated-Root Constacyclic Codes over ${\bm Z}_{\bf 4}+{\bm u{\bm Z}}_{\bf 4}

    LI Lanqiang ,LIU Li
Author information +
文章历史 +

摘要

R=Z4+uZ4, Rn=R[x]/(xn(2u1)), 其中u2=0, n=2e. 通过对环R上码长为n(2u1)-常循环码结构的研究, 得到这些码的生成元, 并对环R上码长为n的所有(2u1)-常循环码进行分类, 而且研究了该环上(2u1)-常循环码的Hamming距离分布. 最后给出环R上码长为n(2u1)-常循环码的对偶码的结构以及环R上码长为n的自正交与自对偶的(2u1)-常循环码.

Abstract

Let R=Z4+uZ4, Rn=R[x]/(xn(2u1)), where u2=0, n=2e. By studying the structures of (2u1)-constacyclic codes over R of length n, we obtain the generators for these codes and classify all (2u1)-constacyclic codes of length n over R. Further, we study the Hamming distance distributions of (2u1)-constacyclic codes of length n over R. Finally, we give the structures of the duals of (2u1)-constacyclic codes over R of length n and self-orthogonal and self-dual (2u1)-constacyclic codes of length n over R.

引用本文

导出引用
李兰强 , 刘丽. Z4+uZ4上一类重根常循环码. 系统科学与数学, 2017, 37(3): 870-881. https://doi.org/10.12341/jssms13110
LI Lanqiang , LIU Li. A Family of Repeated-Root Constacyclic Codes over ${\bm Z}_{\bf 4}+{\bm u{\bm Z}}_{\bf 4}. Journal of Systems Science and Mathematical Sciences, 2017, 37(3): 870-881 https://doi.org/10.12341/jssms13110
PDF(334 KB)

198

Accesses

0

Citation

Detail

段落导航
相关文章

/