• 论文 •

真三维显示系统的Roesser模型及其性能分析

1. 长春理工大学电子信息工程学院, 长春 130022
• 出版日期:2019-04-25 发布日期:2019-07-19

YANG Yang, TIAN Ye, LIU Zhi, CHEN Guolu. Roesser Model of True 3D Display System and Its Performance Analysis[J]. Journal of Systems Science and Mathematical Sciences, 2019, 39(4): 534-544.

Roesser Model of True 3D Display System and Its Performance Analysis

YANG Yang, TIAN Ye, LIU Zhi, CHEN Guolu

1. School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022
• Online:2019-04-25 Published:2019-07-19

This paper studies the optical display problem using the method of multidimensional system control theory. In order to model the true three-dimensional display system and analyze its performance, for the distribution of each voxel point in the body space, a three-dimensional position coordinate and a one-dimensional time coordinate are combined to establish a four-dimensional Roesser model for the state space representation of three-dimensional display system. The working process of the true three-dimensional display system is described, based on which, real-time analysis is performed, and the system matrix is simplified. The fixed-point quantization model is introduced, and the necessary and sufficient conditions for the globally asymptotically stable of the system are derived. Experimental results show that in a true three-dimensional display system of sizes $4*4*4$ and $8*8*8$, the state vector of the voxel point converges to zero. Therefore, it is asymptotically stable. The Roesser model representation method proposed in this paper not only simplifies the mathematical expression of the system, but also facilitates the system analysis and design, and facilitates the software implementation of the micro controller. The real-time and stability analysis can be widely applied to the analysis and design of true three-dimensional display systems. Therefore, it has a very high application value.

()
 [1] 胡晓元,孙秉珍. 基于双论域量化模糊粗糙集的公共卫生应急决策模型[J]. 系统科学与数学, 2019, 39(3): 409-424. [2] 倪洪杰，何德峰，俞立. 轮式移动舞台机器人双模模型预测控制[J]. 系统科学与数学, 2018, 38(11): 1229-1239. [3] 刘萍，李伟银，郭清才. 具不同发展阶段和共生关系企业集群系统的持久性和概周期解一致渐近稳定性[J]. 系统科学与数学, 2016, 36(8): 1187-1202. [4] 陈东彦，于浍. 状态饱和2-D离散系统的稳定性分析[J]. 系统科学与数学, 2014, 34(2): 171-178. [5] 徐晟，周少波. 马尔科夫切换型资产定价模型随机theta方法的稳定性[J]. 系统科学与数学, 2013, 33(10): 1210-1223. [6] 邓义华. 一类中立型延迟积分微分方程Runge-Kutta方法的稳定性[J]. 系统科学与数学, 2011, 31(1): 48-056.