• 论文 •

### 基于CEEMD与GA-SVR的猪肉价格集成预测模型

1. 华南农业大学数学与信息学院, 广州 510642
• 出版日期:2020-06-25 发布日期:2020-08-25

ZHANG Dabin,CAI Chaomin,LING Liwen, CHEN Shanying. Pork Price Ensemble Prediction Model Based on CEEMD and GA-SVR[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(6): 1061-1073.

### Pork Price Ensemble Prediction Model Based on CEEMD and GA-SVR

ZHANG Dabin ,CAI Chaomin ,LING Liwen, CHEN Shanying

1. College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642
• Online:2020-06-25 Published:2020-08-25

In order to improve the accuracy of pork price forecasting, a pork price ensemble prediction model is constructed, based on the decomposition ability of the complementary ensemble empirical mode decomposition (CEEMD) method and the adaptive prediction property of genetic algorithm-support vector regression (GA-SVR) model. First, for solving the complex wave characteristics of pork price, CEEMD is used to decompose pork price and obtain the Intrinsic Mode Function (IMF) sequence set. Second, permutation entropy (PE) is used to analyze the complexity of IMF sequences so as to further decompose complex sequences by the Fast Fourier Transform method (FFT). Three, grey correlation degree (GCD) is used to analyze the correlation coefficient of IMF sequences and combine the similar IMF sequences. Finally, the GA-SVR prediction model is constructed to predict the IMFs, and the prediction results of each sub-sequence are integrated to obtain the final price prediction. Taking the market pork prices in China as samples, the empirical results show that the ensemble prediction model is significantly superior to other single prediction models and decomposition ensemble prediction models in prediction accuracy and directionality indicators.

()
 [1] 郭海湘, 赵佳佳, 黎金玲. 滑坡灾害临时避难所区位布局规划方法[J]. 系统科学与数学, 2021, 41(2): 401-419. [2] 陈立轩, 赵思佳, 李秀婷, 董纪昌. 商业地产市场仿真模型研究: 以上海市为例[J]. 系统科学与数学, 2021, 41(11): 3049-3064. [3] 姜伟, 徐贝灵, 王天文. B2C配送中心分散存储优化问题研究[J]. 系统科学与数学, 2021, 41(11): 3170-3180. [4] 凌立文, 陈诗欣, 张大斌, 张博婷. 基于多时间尺度组合策略的我国猪肉价格预测研究[J]. 系统科学与数学, 2021, 41(10): 2829-2842. [5] 李美娟，袁宁，陈磊. 基于投影法和夹角度量法的改进TOPSIS[J]. 系统科学与数学, 2020, 40(9): 1614-1627. [6] 张培文，吴江，汪瑜，孙宏. 机队运力配置和USApHMP问题的联合决策模型与算法[J]. 系统科学与数学, 2020, 40(8): 1432-1446. [7] 张玉州，徐廷政，郑军帅. 基于混合遗传算法的紧急程度不确定应急物流问题求解[J]. 系统科学与数学, 2020, 40(4): 714-728. [8] 林志炳，王贵用. 基于三层编码遗传算法求解同种产品存在多个工件的FJSP[J]. 系统科学与数学, 2020, 40(12): 2401-2415. [9] 王雷，王欣，刘德海，胡卉. 智能网联下无人驾驶汽车配送路径优化方法[J]. 系统科学与数学, 2020, 40(11): 1984-1998. [10] 常思琳，岳德权，张玉英. 两类顾客的生产服务库存模型的稳态分析及最优生产策略[J]. 系统科学与数学, 2020, 40(11): 2093-2107. [11] 山珊，刘颖琦，叶顺心. 面向付费类交通PPP项目的价格设计与补贴动态调整方案研究[J]. 系统科学与数学, 2019, 39(6): 944-953. [12] 徐林明，李美娟，欧忠辉，谢雅萍. 基于虚拟最劣解TOPSIS和灰关联度的动态评价方法[J]. 系统科学与数学, 2019, 39(3): 365-377. [13] 张雷. 基于优先等级的震后应急物资LRP 优化决策模型[J]. 系统科学与数学, 2017, 37(2): 491-501. [14] 石雪涛，朱帮助. 基于相空间重构和最小二乘支持向量回归模型参数同步优化的碳市场价格预测[J]. 系统科学与数学, 2017, 37(2): 562-572. [15] 方兴华，宋明顺，鲁伟. 测量不确定度信息约束下的最大熵分布研究[J]. 系统科学与数学, 2017, 37(12): 2337-2346.