• 论文 •

### 机队运力配置和USApHMP问题的联合决策模型与算法

1. 1. 西南财经大学统计学院,  成都 611130; 2. 中国民航飞行学院机场工程与运输管理学院,  广汉 618307; 3. 中国民航飞行学院飞行技术与飞行安全科研基地,  广汉 618307
• 出版日期:2020-08-25 发布日期:2020-09-24

ZHANG Peiwen, WU Jiang, WANG Yu, SUN Hong. A Joint Decision Model and Algorithm for Fleet Capacity and USApHMP Problem[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(8): 1432-1446.

### A Joint Decision Model and Algorithm for Fleet Capacity and USApHMP Problem

ZHANG Peiwen 1,2 ,WU Jiang1 ,WANG Yu2 ,SUN Hong3

1. 1. School of Statistics, Sothwestern University of Finance and Economics, Chengdu 611130; 2. School of Airport and Transportation Management, Civil Aviation Flight University of China, Guanghan 618307; 3. Scientific Base of Flying Technology and Safety, Civil Aviation Flight University of China, Guanghan 618307
• Online:2020-08-25 Published:2020-09-24

In order to solve the problem of USApHMP (uncapacitated single allocation $p$-hub location) method neglecting the influence of airline fleet capacity allocation decision on unit passenger flow cost. The location of the hub airport, the connection between hub and non-hub, the selection of the route type and its frequency were regarded as decision variables．The limitations including the passenger demand on each itinerary, available flying frequency on each flight leg, and available block time of each fleet type were considered as constraints. A joint decision mathematical model of fleet route allocation, frequency selection and USApHMP problem was constructed, whose optimization objective was to minimize fleet capacity allocation cost and hub setting cost of airline companies, and which can be solved by a genetic algorithm. The result of example analysis shows that: Take 4 models, 10 cities and 90 pair-cities into consideration, and compared with the traditional hub route network design method, the total network cost of the joint decision model is reduced by 9.39$\%$, and the route maximum flight frequency is an important factor affecting the hub network design.

()
 [1] 俞高锋, 李登峰. 网络安全威胁态势评级的变权方法[J]. 系统科学与数学, 2021, 41(9): 2477-2491. [2] 徐蕾艳, 孟志青. 条件风险值下直营连锁企业供销平衡鲁棒策略研究[J]. 系统科学与数学, 2021, 41(8): 2149-2169. [3] 黄晓辉, 卢焱, 唐锡晋. 基于在线媒体的新冠疫情社会舆情多视角分析[J]. 系统科学与数学, 2021, 41(8): 2182-2198. [4] 赵振宇, 张垚, 樊伟光. 基于资源-项目-需求"链的分布式可再生能源项目适应度研究[J]. 系统科学与数学, 2021, 41(8): 2217-2233. [5] 谷浩, 毕潇, 王丹, 李刚, 邹晶, 陈明. 基于ResNet和反卷积网络模型的有限角CT图像重建算法[J]. 系统科学与数学, 2021, 41(8): 2349-2360. [6] 李美娟, 潘瑜昕, 徐林明, 卢锦呈. 改进区间数动态 TOPSIS 评价方法[J]. 系统科学与数学, 2021, 41(7): 1891-1904. [7] 李爱忠, 任若恩, 董纪昌. 稀疏网络下核范数回归的连续时间Smart Beta策略[J]. 系统科学与数学, 2021, 41(7): 1927-1937. [8] 赵伟, 王钟梅, 吴纯杰. 结合测量误差的检测多元协方差矩阵的EWMA控制图[J]. 系统科学与数学, 2021, 41(7): 2018-2034. [9] 彭定洪, 卞志洋. 面向产品设计方案的犹豫模糊 Kansei-TOPSIS 评价方法[J]. 系统科学与数学, 2021, 41(6): 1630-1647. [10] 左凯, 吴文青, 张元元. 修理工多重休假且修理设备可更换的$n$中取$k$温贮备系统研究[J]. 系统科学与数学, 2021, 41(6): 1729-1741. [11] 刘艳霞, 王芝皓, 芮荣祥, 田茂再. 广义函数型部分变系数混合模型的估计[J]. 系统科学与数学, 2021, 41(6): 1742-1760. [12] 罗小丽, 戴璐, 练红海, 李谟发, 邓鹏. 具有时滞概率分布的电力系统负荷频率稳定性分析[J]. 系统科学与数学, 2021, 41(5): 1245-1255. [13] 张小英, 王平, 冯红银萍. 常微分方程-薛定谔方程耦合系统的输出反馈镇定[J]. 系统科学与数学, 2021, 41(4): 887-897. [14] 陈振杰, 傅勤, 郁鹏飞, 张丹. 一类四阶抛物型偏微分多智能体系统的协调控制[J]. 系统科学与数学, 2021, 41(4): 898-912. [15] 杨贵军, 吴洁琼. Pareto $\pi$ps 抽样的~Horvitz-Thompson 估计量方差研究[J]. 系统科学与数学, 2021, 41(4): 1150-1163.