自共轭互反多项式的推广

胡建,曹喜望

系统科学与数学 ›› 2020, Vol. 40 ›› Issue (8) : 1507-1516.

PDF(312 KB)
PDF(312 KB)
系统科学与数学 ›› 2020, Vol. 40 ›› Issue (8) : 1507-1516. DOI: 10.12341/jssms13938
论文

自共轭互反多项式的推广

    胡建,曹喜望
作者信息 +

Generalizations of Self-Conjugate-Reciprocal Polynomials

    HU Jian ,CAO Xiwang
Author information +
文章历史 +

摘要

文章给出有限域~Fq2上~xqn+1λ~的分解和 首一不可约~λ-自共轭互反多项式的计数公式, 其中~q~是素数方幂, λFq. 进一步, 得到了~Fq2上 ~xn+1~的自共轭互反多项式因子的计数公式. 将此公式应用在负循环码上, ~Fq2上 厄米特互补对偶负循环码的个数也被确定.

Abstract

In this paper, we present a factorization of xqn+1λ over Fq2 and the enumeration of self-conjugate-reciprocal monic polynomials over Fq2, where q is a prime power and λFq. Furthermore, we propose the explicit number of monic self-conjugate-reciprocal irreducible factors of xn+1. As an application to negacyclic codes, the number of linear Hermitian complementary dual negacyclic codes has been evaluated.

关键词

有限域 / 自共轭互反多项式 / 负循环码 / 厄米特互补对偶负循环码.

引用本文

导出引用
胡建 , 曹喜望. 自共轭互反多项式的推广. 系统科学与数学, 2020, 40(8): 1507-1516. https://doi.org/10.12341/jssms13938
HU Jian , CAO Xiwang. Generalizations of Self-Conjugate-Reciprocal Polynomials. Journal of Systems Science and Mathematical Sciences, 2020, 40(8): 1507-1516 https://doi.org/10.12341/jssms13938
PDF(312 KB)

Accesses

Citation

Detail

段落导航
相关文章

/