摘要
文章研究具有小修和一般型更换策略的多状态退化
系统,该系统由\;个带有边界条件的微积分方程表示.运
用-半群理论及算子理论证明该系统非负动态解的存在唯一性.并通过对
系统算子谱特征的研究证明该系统的动态解强收敛于其稳态解.进一步利用共尾及
豫解正算子的相关理论证明该系统的指数稳定性.
Abstract
In this paper, we investigate a multi-state deteriorating
system with minimal repairs and the replacement policy in general
distribution, which is described by 2n+1 differential-integral
equations with boundary conditions. By using the -semigroup
theory and the operator theory, we prove the existence of a unique
positive dynamic solution. And then, by analyzing the spectral
characteristics of the system operator, we prove the dynamic
solution of the system converges strongly to its steady-state
solution. Furthermore, by using the theory of cofinal and resolvent
positive operator, we prove the exponential stability of the
system.
关键词
退化系统, -半群理论, 动态解, 稳态解, 指数稳定性.
{{custom_keyword}} /
祁雪萍, 阿不都克热木·阿吉.
具有小修和一般型更换策略的多状态退化系统的定性分析. 系统科学与数学, 2021, 41(9): 2571-2594. https://doi.org/10.12341/jssms20293
QI Xueping , ABDUKERIM Haji.
Stability Analysis of a Multi-State Deteriorating System with
Minimal Repairs and the Replacement Policy in General Distribution. Journal of Systems Science and Mathematical Sciences, 2021, 41(9): 2571-2594 https://doi.org/10.12341/jssms20293
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}