• • 上一篇    下一篇

随机视角下的二维二元语义多属性群决策方法

王泽林1, 王应明2,3   

  1. 1. 中国计量大学经济与管理学院, 杭州 310018;
    2. 福州大学决策科学研究所, 福州 350116;
    3. 福州大学空间数据挖掘与信息共享教育部重点实验室, 福州 350116
  • 收稿日期:2020-10-13 修回日期:2022-01-02 出版日期:2022-05-25 发布日期:2022-07-23
  • 通讯作者: 王应明,Email:msymwang@hotmail.com.
  • 基金资助:
    国家自然科学基金项目(61773123)资助课题.

王泽林, 王应明. 随机视角下的二维二元语义多属性群决策方法[J]. 系统科学与数学, 2022, 42(5): 1161-1177.

WANG Zelin, WANG Yingming. Multiple Attribute Group Decision Making Method Based on Two-Dimension 2-Tuple Linguistic from a Stochastic Perspective[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(5): 1161-1177.

Multiple Attribute Group Decision Making Method Based on Two-Dimension 2-Tuple Linguistic from a Stochastic Perspective

WANG Zelin1, WANG Yingming2,3   

  1. 1. School of Economics and Management, China Jiliang University, Hangzhou 310018;
    2. Decision Sciences Institute, Fuzhou University, Fuzhou 350116;
    3. Key Laboratory of Spatial Data Ministry of Education, Fuzhou University, Fuzhou 350116
  • Received:2020-10-13 Revised:2022-01-02 Online:2022-05-25 Published:2022-07-23
二维二元语义相比传统的二元语义表示法能够更准确的表达语言评价信息,但在多属性群决策问题中,不同维度的语言信息很难得到有效的处理.因此,利用随机多目标可接受度分析(SMAA)的思想,结合蒙特卡罗模拟的原理,提出了基于SMAA-2和考虑随机性的二维二元语义多属性群决策方法.该方法将二维二元语义视为在属性评估值附近波动的随机数,在仅考虑属性权重和专家权重的视角下分别计算中心权重向量、排名可接受度和自信因子这三类指标,并据此进行决策分析.最后通过算例分析说明了该方法能够为决策者提供不同视角下的决策信息并验证了方法的有效性.
Two-dimension 2-tuple linguistic model is able to express linguistic evaluation information more accurately than traditional 2-tuple linguistic representation. However, in multi-attribute group decision making problems, it is difficult to handle linguistic information effectively. Therefore, using the idea of stochastic multi-criteria acceptability analysis (SMAA), combined with the principle of Monte Carlo simulation, a two-dimension 2-tuple linguistic multi-attribute group decision making method based on SMAA-2 and considering randomness is proposed. This method regards twodimension 2-tuple linguistics as random numbers that fluctuate around the attribute evaluation value. Under the perspective of only considering attribute weights and experts weights, three types of indicators:Center weight vector, rank acceptability, and confidence factor are calculated separately, then make decision analysis accordingly. Finally, a numerical example analysis shows that the method can provide decision makers information from different perspectives and verifies the effectiveness of the method.

MR(2010)主题分类: 

()
[1] Yue Q, Zhang L L. Two-sided matching for hesitant fuzzy numbers in smart intelligent technique transfer. Mechanical Systems and Signal Processing, 2020, 139:106643.
[2] Tesfamariam S, Sadiq R, Najjaran H. Decision making under uncertainty-An example for seismic risk management. Risk Analysis, 2010, 30(1):78-94.
[3] Triantaphyllou E, Lin C T. Development and evaluation of five fuzzy multiattribute decisionmaking methods. International Journal of Approximate Reasoning, 1996, 14(4):281-310.
[4] 乐琦,张莉莉.基于新排序函数的直觉模糊双边匹配决策方法.控制与决策, 2020, 35(4):985-992.(Yue Q, Zhang L L. Decision method for intuitionistic fuzzy two-sided matching based on the new ranking function. Control and Decision, 2020, 35(4):985-992.)
[5] Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences, 1975, 8(3):199-249.
[6] Herrera F, Mart′ınez L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems, 2000, 8(6):746-752.
[7] Labella á, Dutta B, Mart′ınez L. An optimal Best-Worst prioritization method under a 2-tuple linguistic environment in decision making. Computers&Industrial Engineering, 2021, 155:107141.
[8] Mart′ınez L, Herrera F. An overview on the 2-tuple linguistic model for computing with words in decision making:Extensions, applications and challenges. Information Sciences, 2012, 207:1-18.
[9] Dong Y C, Herrera-Viedma E. Consistency-driven automatic methodology to set interval numerical scales of 2-tuple linguistic term sets and its use in the linguistic GDM with preference relation. IEEE Transactions on Cybernetics, 2015, 45(4):780-792.
[10] 王欣荣,樊治平.基于二元语义信息处理的一种语言群决策方法.管理科学学报, 6(5):1-5.(Wang X Y, Fan Z P. Method for group decision making based on two tuple linguistic information processing. Journal of Management Sciences in China, 2003, 6(5):1-5.)
[11] 卫东,周光中,杨善林.基于二维语言评价信息的群体决策方法.系统工程,2009, 27(2):113-118.(Zhu W D, Zhou G Z, Yang S L. An approach to group decision making based on 2-dimension linguistic assessment information. Systems Engineering, 2009, 27(2):113-118.
[12] 张晨,周光中,朱卫东.基于两维语义证据推理的科学基金项目专家评议系统研究.中国软科学, 2011,(2):176-182.(Zhang C, Zhou G Z, Zhu W D. Research on peer review system for the national science foundation based on two-dimensional semantics evidence reasoning. China Soft Science, 2011,(2):176-182.)
[13] Liu P D. An approach to group decision making based on 2-dimension uncertain linguistic information. Technological and Economic Development of Economy, 2012, 18(3):424-437.
[14] Zhu H, Zhao J B, Xu Y. 2-dimension linguistic computational model with 2-tuples for multiattribute group decision making. Knowledge-Based Systems, 2016, 103:132-142.
[15] Yu X H, Xu Z S, Liu S S, et al. Multicriteria decision making with 2-dimension linguistic aggregation techniques. International Journal of Intelligent Systems, 2012, 27(6):539-562.
[16] Liu P D, Yu X C. 2-Dimension uncertain linguistic power generalized weighted aggregation operator and its application in multiple attribute group decision making. Knowledge-Based Systems, 2014, 57:69-80.
[17] Liu P D, He L, Yu X C. Generalized hybrid aggregation operators based on the 2-dimension uncertain linguistic information for multiple attribute group decision making. Group Decision and Negotiation, 2016, 25(1):103-126.
[18] 王泽林,王应明.权重信息完全未知的二维二元语义多属性群决策方法.控制与决策, 2019, 34(9):1999-2009.(Wang Z L, Wang Y M. A method for multiple attribute group decision making with complete unknown weight information based on 2-dimension 2-tuple linguistic information. Control and Decision, 2019, 34(9):1999-2009.)
[19] Wu Y N, Sun X K, Lu Z M, et al. Optimal site selection of straw biomass power plant under 2-dimension uncertain linguistic environment. Journal of Cleaner Production, 2019, 212:1179-1192.
[20] Zhao J B, Zhu H, Li H. 2-dimension linguistic PROMETHEE methods for multiple attribute decision making. Expert Systems with Applications, 2019, 127:97-108.
[21] Wang Z L, Rodr′ıguez R M, Wang Y M, et al. A two-stage minimum adjustment consensus model for large scale decision making based on reliability modeled by two-dimension 2-tuple linguistic information. Computers&Industrial Engineering, 2020, 151(3):106973.
[22] Lahdelma R, Hokkanen J, Salminen P. SMAA-stochastic multiobjective acceptability analysis. European Journal of Operational Research, 1998, 106(1):137-143.
[23] Lahdelma R, Miettinen K, Salminen P. Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA). European Journal of Operational Research, 2003, 147(1):117-127.
[24] Corrente S, Greco S, Nicotra M, et al. Evaluating and comparing entrepreneurial ecosystems using SMAA and SMAA-S. The Journal of Technology Transfer, 2019, 44(2):485-519.
[25] 朱运霞,昂胜,杨锋.基于SMAA和公共权重的决策单元效率评价与排序.运筹与管理, 2021, 30(4):184-189.(Zhu Y X, Ang S, Yang F. Efficiency evaluation and ranking for decision making units based on SMAA and common weight. Operations Research and Management Science, 2021, 30(4):184-189.)
[26] Lahdelma R, Salminen P. SMAA-2:Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 2001, 49(3):444-454.
[27] Zhu H, Zhao J, Xu Y. 2-dimension linguistic computational model with 2-tuples for multiattribute group decision making. Knowledge-Based Systems, 2016, 103:132-142.
[28] 盛骤.概率论与数理统计.北京:高等教育出版社,2001.(Sheng Z. Probability Theory and Mathematical Statistics. Beijing:Higher Education Press, 2001.)
[29] 马珍珍,米传民,党耀国,等.考虑语义灰度的二元语义群决策方法.系统工程, 2014, 11(32):132-138.(Ma Z Z, Mi C M, Dang Y G, et al. A 2-tuple linguistic group decision making method considering linguistic degree of greyness. Systems Engineering, 2014, 11(32):132-138.)
[1] 付超, 盛松, 常文军. 考虑缺失属性的多属性群决策方法[J]. 系统科学与数学, 2022, 42(4): 920-934.
[2] 彭娟娟, 田超. 社交网络环境下基于单值中智信息的大规模群决策方法[J]. 系统科学与数学, 2022, 42(4): 935-954.
[3] 张兴贤, 王应明. 一种考虑证据权重和可靠性的混合型多属性群决策方法[J]. 系统科学与数学, 2021, 41(5): 1305-1327.
[4] 彭定洪, 张文华. 智慧无废城市评选的序贯式群决策 EDAS 法[J]. 系统科学与数学, 2021, 41(3): 688-704.
[5] 张俊芳,周礼刚,金自强. 基于Pythagorean犹豫模糊熵和交叉熵的绩效评价方法[J]. 系统科学与数学, 2021, 41(2): 436-448.
[6] 王韧, 陈明. 基于改进Min-Max权重优化模型的语意评价矩阵群决策研究[J]. 系统科学与数学, 2021, 41(11): 3181-3192.
[7] 武文顺,李应,倪志伟,朱旭辉,伍章俊. 概率犹豫模糊Maclaurin几何对称平均算子及其群决策模型[J]. 系统科学与数学, 2020, 40(6): 1074-1080.
[8] 杨艺. 基于全序关系与A-DHFHW算子的DHFMAGDM方法及其应用[J]. 系统科学与数学, 2020, 40(5): 871-890.
[9] 吴凡,赵勇,陈阳. 一个基于夹角测度的群决策结果稳定性的定量分析方法研究[J]. 系统科学与数学, 2017, 37(4): 1063-1071.
[10] 金飞飞,倪志伟,李亚平.  基于犹豫乘性偏好关系的群决策方法[J]. 系统科学与数学, 2017, 37(1): 226-238.
[11] 魏翠萍,葛淑娜. 犹豫模糊语言幂均算子及其在群决策中的应用[J]. 系统科学与数学, 2016, 36(8): 1308-1317.
[12] 陈振松,李延来,Kwai-Sang Chin. 基于T2ITrFHA算子与T2ITrFHG算子联合的多准则群决策方法[J]. 系统科学与数学, 2016, 36(5): 649-670.
[13] 丁若,杨然,杨鹏,徐皓. 航天工程方案决策中的改进专家权重调整算法及应用[J]. 系统科学与数学, 2016, 36(12): 2234-2241.
[14] 秦娟,陈振颂,李延来. 基于改进犹豫模糊熵的群体MULTMOORA决策方法[J]. 系统科学与数学, 2016, 36(12): 2375-2392.
[15] 周晓辉,姚俭. 基于Choquet积分的区间直觉梯形模糊多属性群决策[J]. 系统科学与数学, 2015, 35(2): 245-256.
阅读次数
全文


摘要