• • 上一篇    下一篇

具有脉冲效应的切换布尔控制网络的集可控

苟志丽, 徐勇, 王金环, 沈宇桐   

  1. 河北工业大学理学院, 天津 300401
  • 收稿日期:2020-12-09 修回日期:2021-04-27 出版日期:2022-05-25 发布日期:2022-07-23
  • 基金资助:
    河北省自然科学基金项目(F2018202075)资助课题.

苟志丽, 徐勇, 王金环, 沈宇桐. 具有脉冲效应的切换布尔控制网络的集可控[J]. 系统科学与数学, 2022, 42(5): 1100-1112.

GOU Zhili, XU Yong, WANG Jinhuan, SHEN Yutong. Set Controllability of Switched Boolean Control Networks with Impulsive Effects[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(5): 1100-1112.

Set Controllability of Switched Boolean Control Networks with Impulsive Effects

GOU Zhili, XU Yong, WANG Jinhuan, SHEN Yutong   

  1. School of Science, Hebei University of Technology, Tianjin 300401
  • Received:2020-12-09 Revised:2021-04-27 Online:2022-05-25 Published:2022-07-23
文章研究具有脉冲效应的切换布尔控制网络的集可控性问题.首先,利用矩阵半张量积方法建立具有脉冲效应的切换布尔控制网络的代数形式.其次,基于该代数表示,分别构造在自由控制序列和网络输入控制下的集可控矩阵,并通过相应的集可控矩阵得到了判定具有脉冲效应的切换布尔控制网络的集可控性的充要条件.最后,给出数值实例说明文章结果的有效性.
In this paper, the set controllability of switched Boolean control networks with impulsive effects is studied. Firstly, the algebraic form of switched Boolean control networks with impulsive effects is established by using semi-tensor product method of matrices. Secondly, based on the algebraic representation, the set controllable matrices under free control sequence and network input control are constructed, respectively. The necessary and sufficient conditions for determining the set controllability of switched Boolean control networks with impulsive effects are obtained by using the corresponding set controllable matrices. Finally, numerical examples are given to illustrate the effectiveness of the results.

MR(2010)主题分类: 

()
[1] Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 1969, 22(3):437-467.
[2] Cheng D Z, Qi H S, Zhao Y. Analysis and control of Boolean networks:A semi-tensor product approach. London, UK:Springer-Verlag, 2011.
[3] Akutsu T, Hayashida M, Ching W K, et al. Control of Boolean networks:Hardness results and algorithms for tree structured networks. Journal of Theoretical Biology, 2007, 244(4):670-679.
[4] Langmead C J, Jha S K. Symbolic approaches for finding control strategies in Boolean networks. Journal of Bioinformatics and Computational Biology, 2009, 7(2):323-338.
[5] Zhu Q X, Liu Y, Lu J Q, et al. Controllability and observability of Boolean control networks via sampled-data control. IEEE Transactions on Control of Network Systems, 2019, 6(4):1291-1301.
[6] Wang S, Feng J E, Zhao J L, et al. Controllability decomposition of dynamic-algebraic Boolean control networks. International Journal of Control, 2020, 93(7):1684-1695.
[7] Yu Y Y, Wang B, Feng J E. Input observability of Boolean control networks. Neurocomputing, 2019, 333:22-28.
[8] Wang Y H, Zhang X, Hao Y Q. Robust controllability and observability of Boolean control networks under different disturbances. Mathematical Problems in Engineering, 2019, 2019:1813594.
[9] Sun L J, Lu J Q, Lou J G, et al. Set stabilization of Boolean networks via sampled-data control. Asian Journal of Control, 2019, 21(6):2685-2690.
[10] 付世华,赵建立,潘金凤.布尔网络的稳定性与镇定.系统科学与数学, 2014, 34(4):385-391.(Fu S H, Zhao J L, Pan J F. Stability and stabilization of Boolean networks. Journal of Systems Science and Mathematical Sciences, 2014, 34(4):385-391.)
[11] 磊,巩蒙蒙,朱培勇.状态和输入受限的切换奇异布尔控制网络的最优控制(英文).控制理论与应用, 2018, 35(3):299-307.(Deng L, Gong M M, Zhu P Y. Optimal control of switched singular Boolean control networks with state and input constraints. Control Theory&Applications, 2018, 35(3):299-307.)
[12] Zhu Q X, Liu Y, Lu J Q, et al. On the optimal control of Boolean control networks. SIAM Journal on Control and Optimization, 2018, 56(2):1321-1341.
[13] Zhang X, Wang Y H, Cheng D Z. Output tracking of Boolean control networks. IEEE Transactions on Automatic Control, 2020, 65(6):2730-2735.
[14] Zhang Z H, Leifeld T, Zhang P. Finite horizon tracking control of Boolean control networks. IEEE Transactions on Automatic Control, 2018, 63(6):1798-1805.
[15] El-Farra N H, Gani A, Christofides P D. Analysis of mode transitions in biological networks. AICHE Journal, 2005, 51(8):2220-2234.
[16] Tyson J J, Csikasz-Nagy A, Novak B. The dynamics of cell cycle regulation. Bioessays News&Reviews in Molecular Cellular&Developmental Biology, 2002, 24(12):1095-1109.
[17] Li Y L, Li J J, Ma Z M, et al. Controllability and observability of state-dependent switched Boolean control networks with input constraints. Asian Journal of Control, 2019, 21(6):2662-2673.
[18] Zhang K Z, Zhang L J, Xie L H. Finite automata approach to observability of switched Boolean control networks. Nonlinear Analysis:Hybrid Systems, 2016, 19:186-197.
[19] 李芳菲,孙继涛.切换布尔网络稳定性的牵制控制.系统科学与数学, 2016, 36(3):390-398.(Li F F, Sun J T. Pinning control for the stability of switched Boolean networks. Journal of Systems Science and Mathematical Sciences, 2016, 36(3):390-398.)
[20] Yerudkar A, Del Vecchio C, Glielmo L. Feedback stabilization control design for switched Boolean control networks. Automatica, 2020, 116:108934.
[21] Li F F, Lu X W, Yu Z X. Optimal control algorithms for switched Boolean network. Journal of the Franklin Institute, 2014, 351(6):3490-3501.
[22] Li H T, Wang Y Z. Output tracking of switched Boolean networks under open-loop/closed-loop switching signals. Nonlinear Analysis:Hybrid Systems, 2016, 22:137-146.
[23] Zhong J, Ho D W C, Lu J Q, et al. Switching-signal-triggered pinning control for output tracking of switched Boolean networks. IET Control Theory&Applications, 2017, 11(13):2089-2096.
[24] Chen H, Sun J T. Global stability and stabilization of switched Boolean network with impulsive effects. Applied Mathematics and Computation, 2013, 224:625-634.
[25] Li H T, Xu X J, Ding X Y. Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect. Applied Mathematics and Computation, 2019, 347:557-565.
[26] Xu X J, Liu Y S, Li H T, et al. Synchronization of switched Boolean networks with impulsive effects. International Journal of Biomathematics, 2018, 11(6):1850080.
[27] Zhang Q L, Feng J E, Pan J F, et al. Set controllability for switched Boolean control networks. Neurocomputing, 2019, 359:476-482.
[28] Wang J, Liu Y S, Li H T. Finite-time controllability and set controllability of impulsive probabilistic Boolean control networks. IEEE Access, 2020, 8:111995-112002.
[29] Li Y L, Li J J, Feng J E. Set controllability of Boolean control networks with impulsive effects. Neurocomputing, 2020, 418:263-269.
[30] Cheng D Z, Li C X, He F H. Observability of Boolean networks via set controllability approach. Systems&Control Letters, 2018, 115:22-25.
[31] Zhong J, Liu Y, Kou K L, et al. On the ensemble controllability of Boolean control networks using STP method. Applied Mathematics and Computation, 2019, 358:51-62.
[1] 时胜男,徐勇,苏勇.  网络演化知识博弈模型与算法[J]. 系统科学与数学, 2020, 40(3): 423-433.
[2] 徐勇,苏雪,王金环,时胜男. 非对称企业合作创新网络演化博弈[J]. 系统科学与数学, 2019, 39(12): 2057-2069.
[3] 王元华,刘挺,程代展. 矩阵半张量积及换位矩阵的几点注解[J]. 系统科学与数学, 2016, 36(9): 1367-1375.
[4] 高娜,韩晓光,陈增强,张青. 带有同步变迁的有界Petri网系统的建模及可达性分析[J]. 系统科学与数学, 2016, 36(7): 924-936.
[5] 王彪,冯俊娥.  周期时变布尔控制网络的能控性及其在一类细胞凋零网络上的应用[J]. 系统科学与数学, 2016, 36(7): 973-985.
[6] 韩晓光,陈增强,刘忠信,张青. 有界Petri网的可逆性和活性的STP判别方法[J]. 系统科学与数学, 2016, 36(3): 361-370.
[7] 李睿,杨萌,楚天广. 概率布尔网络的集合镇定控制[J]. 系统科学与数学, 2016, 36(3): 371-380.
[8] 李芳菲,孙继涛. 切换布尔网络稳定性的牵制控制[J]. 系统科学与数学, 2016, 36(3): 390-398.
[9] 贾光钰,冯俊娥. 三种单节点摄动对混合值逻辑网络极限集的影响[J]. 系统科学与数学, 2016, 36(3): 426-436.
[10] 葛美侠,赵建立,李莹. 基于添加惩罚策略的囚徒困境博弈的网络演化模型与分析[J]. 系统科学与数学, 2016, 36(11): 2041-2048.
[11] 付世华,赵建立,潘金凤. 布尔网络的稳定性与镇定[J]. 系统科学与数学, 2014, 34(4): 385-391.
[12] 程代展,刘挺,王元华. 博弈论中的矩阵方法[J]. 系统科学与数学, 2014, 34(11): 1291-1305.
[13] 程代展,齐洪胜. 矩阵半张量积的基本原理与适用领域[J]. 系统科学与数学, 2012, 32(12): 1488-1496.
[14] 卢强,梅生伟. 现代电力系统控制评述---清华大学电力系统国家重点实验室相关科研工作缩影及展望[J]. 系统科学与数学, 2012, 32(10): 1207-1225.
[15] 程代展,赵寅,徐听听. 演化博弈与逻辑动态系统的优化控制[J]. 系统科学与数学, 2012, 32(10): 1226-1238.
阅读次数
全文


摘要