• • 上一篇    下一篇

合作博弈的比例分离解及其在区域经济一体化中的应用

张广, 何楠   

  1. 上海理工大学管理学院 上海 200093
  • 收稿日期:2020-12-31 修回日期:2021-04-29 出版日期:2022-04-25 发布日期:2022-06-18
  • 通讯作者: 张广,Email:g.zhang@usst.edu.cn.
  • 基金资助:
    国家自然科学基金(71901145),上海市哲学社会科学规划课题(2019EGL010)资助课题.

张广, 何楠. 合作博弈的比例分离解及其在区域经济一体化中的应用[J]. 系统科学与数学, 2022, 42(4): 791-801.

ZHANG Guang, HE Nan. The Proportional Split-Off Solution for Cooperative Games and Application in Regional Economic Integration[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 791-801.

The Proportional Split-Off Solution for Cooperative Games and Application in Regional Economic Integration

ZHANG Guang, HE Nan   

  1. Business School, University of Shanghai for Science and Technology, Shanghai 200093
  • Received:2020-12-31 Revised:2021-04-29 Online:2022-04-25 Published:2022-06-18
This paper studies cooperative games and provides a new solution concept called proportional split-off solution based on proportional rule and the forming procedure for a coalition. By applying a given weighted vector and based on decrease of profits, a suitable distributed partition of the grand coalition is obtained. And then, depending on coalitions’ ordering in partition, the marginal contribution of the coalitions is determined by using proportional rule. Later on, three axiomatizations of the proportional split-off solution are proposed by adopting consistency. Finally, application of the new solution is studied on the regional economic situation. By building a synergy game, we analyze the contributions and program of the regional economic synergistic development in Yangtze River Delta.

MR(2010)主题分类: 

()
[1] Gillies D. Some Theorems on n-Person Games. Princeton:Princeton University Press, 1953.[1] Gillies D. Some Theorems on n-Person Games. Princeton:Princeton University Press, 1953.
[2] Bondareva O N. Some applications of the methods of linear programing to the theory of cooperative games. Problemy Kibernet, 1963, 10:119-139.
[3] Shapley L S. On balanced sets and cores. Naval Research Logistics Quarterly, 1967, 14:453-460.
[4] Shapley L S. A value for n-person games. Annals of the Institue of Statistical Mathematics, 1953, 28:307-317.
[5] Béal S, Casajus A, Huettner F, et al. Characterizations of weighted and equal division values. Theory and Decision, 2016, 80(4):649-667.
[6] Thomson W. A new characterization of the proportional rule for claims problems. Economics Letters, 2016, 145:255-257.
[7] Bergantiños G, Sanchez E. The proportional rule for problems with constraints and claims. Mathematical Social Sciences, 2002, 43(2):225-249.
[8] van den Brink R, Herings P J J, van der Laan G, et al. The average tree permission value for games with a permission tree. Economic Theory, 2015, 58(1):99-123.
[9] Shan E, Zhang G, Shan X. The degree value for games with communication structure. International Journal of Game Theory, 2018, 47(3):857-871.
[10] Dutta B, Ray D. A concept of egalitarianism under partition constraints. Econometrica, 1989, 57(3):615-635.
[11] Branzei R, Dimitrov D, Tijs S. The equal split-off set for cooperative games. Banach Center Publications, 2006, 71:39-46.
[12] Dietzenbacher B, Yanovskaya E. Consistency of the equal split-off set. International Journal of Game Theory, 2021, 50(1):1-22.
[13] 吴常艳,黄贤金,陈博文,等.长江经济带经济联系空间格局及其经济一体化趋势.经济地理, 2017,37:71-78.(Wu C Y, Huang X J, Chen B W, et al. Analysis of economic and spatial linkage and economic integration trend in Yangtze River Economic Belt from social network analysis prespective. Economic Geography, 2017, 37:71-78.)
[14] 刘志彪,孔令池.长三角区域一体化发展特征、问题及基本策略.安徽大学学报(哲学社会科学版), 2019, 3:137-147.(Liu Z B, Kong L C. The characteristics, problems and basic strategies of reginal integration development in Yangtze River Delta. Journal of Anhui University (Philosophy and Social Sciences Edition), 2019, 3:137-147.)
[1] 邹荣, 徐根玖. 联盟缺额合意性与均分不可分贡献值[J]. 系统科学与数学, 2022, 42(4): 780-790.
[2] 冯海荣, 周永务, 曾银莲, 钱茜. 基于不平等厌恶的易变质品供应链合作的利他收益分配[J]. 系统科学与数学, 2021, 41(9): 2460-2476.
[3] 陈双莲,郑玉航. 中国区域经济短期波动对长期增长的非线性影响: 金融杠杆的作用[J]. 系统科学与数学, 2021, 41(2): 420-435.
[4] 钱艺平, 林祥, 操君陶.  离散时间多期两个投资者之间的合作投资选择博弈[J]. 系统科学与数学, 2021, 41(11): 3109-3127.
[5] 梁开荣,李登峰,余高峰.  基于两型博弈的双边链路形成策略优化研究[J]. 系统科学与数学, 2020, 40(9): 1550-1563.
[6] 李桂君,寇晨欢,胡军,李慧嘉. 云服务资源调度机制的协同与优化研究[J]. 系统科学与数学, 2020, 40(8): 1365-1383.
[7] 叶银芳,李登峰,余高锋. 需求为三角模糊数的联合订货模型及其成本分摊方法[J]. 系统科学与数学, 2019, 39(7): 1142-1158.
[8] 周珍,崔笑颖,张美佳,林云.  雾霾治理限制性合作博弈与成本分摊研究[J]. 系统科学与数学, 2019, 39(6): 875-887.
[9] 于晓辉,周珍,杜志平. 产业集群背景下模糊联盟结构合作博弈的核心[J]. 系统科学与数学, 2019, 39(6): 934-943.
[10] 杨洁,刘家财. 带风险偏好的区间支付交流结构合作博弈及平均树解[J]. 系统科学与数学, 2019, 39(5): 733-742.
[11] 南江霞,关晶,李登峰. 求解一类直觉模糊联盟合作博弈Shapley 值的新方法[J]. 系统科学与数学, 2019, 39(4): 611-621.
[12] 冯海荣,曾银莲. 线性数量折扣下零售商合作的联盟稳定性研究[J]. 系统科学与数学, 2018, 38(9): 989-1001.
[13] 魏针,李登峰. 基于合作博弈的招生计划分配优化模型研究[J]. 系统科学与数学, 2018, 38(10): 1160-1171.
[14] 冯海荣,李军,曾银莲. 基于两级信用支付的易腐品联合采购博弈分析[J]. 系统科学与数学, 2017, 37(1): 125-142.
[15] 李泉林,杨碧蕊,鄂成国,段灿. 大型并行服务系统的利润分配机制设计[J]. 系统科学与数学, 2016, 36(2): 169-.
阅读次数
全文


摘要