• • 上一篇    下一篇

带Lévy噪声和Markov切换的随机神经网络的自适应有限时间同步分析

麻硕   

  1. 北方民族大学数学与信息科学学院, 银川 750021
  • 收稿日期:2021-01-29 修回日期:2021-11-05 出版日期:2022-05-25 发布日期:2022-07-23
  • 基金资助:
    北方民族大学中央高校基本科研业务费专项资金(2020KYQD17),宁夏重点研发项目(引才专项)(2020BE B04007),国家自然科学基金(62163001)资助课题.

麻硕. 带Lévy噪声和Markov切换的随机神经网络的自适应有限时间同步分析[J]. 系统科学与数学, 2022, 42(5): 1088-1099.

MA Shuo. Finite-Time Synchronization of Stochastic Neural Networks with Markovian Switching and L′evy Noise via Adaptive Control[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(5): 1088-1099.

Finite-Time Synchronization of Stochastic Neural Networks with Markovian Switching and L′evy Noise via Adaptive Control

MA Shuo   

  1. School of Mathematics and Information Science, North Minzu University, Yinchuan 750021
  • Received:2021-01-29 Revised:2021-11-05 Online:2022-05-25 Published:2022-07-23
文章研究了具有Markov切换和Lévy噪声的随机神经网络的有限时间同步问题.利用随机Lyapunov函数方法和带Lévy噪声的Markov切换系统的有限时间稳定性定理,在自适应控制的作用下,得到系统有限时间同步的充分条件.最后,通过一个算例验证所提判据的有效性.
In this paper, the finite-time synchronization of stochastic neural networks with Markovian switching and Lévy noise is investigated. By utilizing the stochastic Lyapunov functional method and finite-time stability theorem for Markovian jumping systems with Lévy noise, sufficient conditions of finite-time synchronization are obtained via adaptive control. Finally, a numerical example is presented to verify the effectiveness of the proposed criteria.

MR(2010)主题分类: 

()
[1] Hoppensteadt F, Izhikevich E. Pattern recognition via synchronization in phase-locked loop neural networks. IEEE Transactions on Neural Networks, 2000, 11(3):734-738.
[2] Kiumarsi B, Lewis F L, Levine D S. Optimal control of nonlinear discrete time-varying systems using a new neural network approximation structure. Neurocomputing, 2015, 156:157-165.
[3] Ko C N. Identification of chaotic system using fuzzy neural networks with time-varying learning algorithm. International Journal of Fuzzy Systems, 2012, 14:540-548.
[4] Pan L J, Cao J D, Al-Juboori U A, et al. Cluster synchronization of stochastic neural networks with delay via pinning impulsive control. Neurocomputing, 2019, 366:109-117.
[5] Wu Y B, Zhu J L, Li W X. Intermittent discrete observation control for synchronization of stochastic neural networks. IEEE Transactions on Cybernetics, 2020, 50(6):2414-2424.
[6] Zhou X H, Zhou W N, Dai A D, et al. Asymptotical stability of stochastic neural networks with multiple time-varying delays. International Journal of Control, 2015, 88(3):613-621.
[7] Zhou X H, Zhou W N, Yang J, et al. A novel scheme for synchronization control of stochastic neural networks with multiple time-varying delays. Neurocomputing, 2015, 159:50-57.
[8] Jiang Y, Luo S X. Periodically intermittent synchronization of stochastic delayed neural networks. Circuits Systems and Signal Process, 2017, 36:1426-1444.
[9] Wang Y L, Cao J D, Hu J Q. Stochastic synchronization of coupled delayed neural networks with switching topologies via single pinning impulsive control. Neural Computing&Applications, 2015, 26:1739-1749.
[10] Yang X S, Cao J D. Adaptive pinning synchronization of coupled neural networks with mixed delays and vector-form stochastic perturbations. Acta Mathematica Scientia, 2012, 32(3):955-977.
[11] Zhang W, Lia C D, Huang T W, et al. Synchronization of neural networks with stochastic perturbation via aperiodically intermittent control. Neural Networks, 2015, 71:105-111.
[12] Wan P, Sun D H, Zhao M. Finite-time and fixed-time anti-synchronization of Markovian neural networks with stochastic disturbances via switching control. Neural Networks, 2020, 123:1-11.
[13] Shi X R, Wang Z L, Han L X. Finite-time stochastic synchronization of time-delay neural networks with noise disturbance. Nonlinear Dynamics, 2017, 88:2747-2755.
[14] Selvaraj P, Sakthivel R, Kwon O M. Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation. Neural Networks, 2018, 105:154-165.
[15] Wu H Q, Zhang X W, Li R X, et al. Finite-time synchronization of chaotic neural networks with mixed time-varying delays and stochastic disturbance. Memetic Computing, 2015, 7(3):231-240.
[16] Zhu Q X, Cao J D. Adaptive synchronization under almost every initial data for stochastic neural networks with time-varying delays and distributed delays. Communications in Nonlinear Science and Numerical Simulation, 2011, 16:2139-2159.
[17] Tong D B, Zhang L P, Zhou W N, et al. Asymptotical synchronization for delayed stochastic neural networks with uncertainty via adaptive control. International Journal of Control, Automation and Systems, 2016, 14(3):706-712.
[18] Tong D B, Zhou W N, Zhou X H, et al. Exponential synchronization for stochastic neural networks with multi-delayed and Markovian switching via adaptive feedback control. Communications in Nonlinear Science and Numerical Simulation, 2015, 29:359-371.
[19] Gan Q T, Hu R X, Liang Y H. Adaptive synchronization for stochastic competitive neural networks with mixed time-varying delays. Communications in Nonlinear Science and Numerical Simulation, 2012, 17:3708-3718.
[20] Vinaya M, Ignatius R P. Effect of Lévy noise on the networks of Izhikevich neurons. Nonlinear Dynamics, 2018, 94:1133-1150.
[21] Ma S, Kang Y M. Exponential synchronization of memristor-based delayed neutral-type neural networks with Lévy noise via impulsive control. Communications in Nonlinear Science and Numerical Simulation, 2018, 57:372-387.
[22] Chen C, Kang Y M, Dynamics of a stochastic multi-strain SIS epidemic model driven by Lévy noise. Communications in Nonlinear Science and Numerical Simulation, 2017, 42:379-395.
[23] Applebaum D. Lévy Processes and Stochastic Calculus. New York:Cambridge University Press, 2009.
[24] Applebaum D, Siakalli M. Stochastic stabilization of dynamical systems using Lévy noise. Stochastics and Dynamics, 2010, 10:497-508.
[25] Wu Z G, Shi P, Su H Y, et al. Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data. IEEE Transactions on Cybernetics, 2013, 43(6):1796-1806.
[26] Guo Y, Su H, Ding X H, et al. Global stochastic stability analysis for stochastic neural networks with infinite delay and Markovian switching. Applied Mathematics and Computation, 2014, 245:53-65.
[27] Zhao C H, Guo D H. Global exponential stability of hybrid non-autonomous neural networks with Markovian switching. Neural Processing Letters, 2020, 52:525-543.
[28] Ma S, Kang Y M. Finite time synchronization of stochastic Markovian jumping genetic oscillator networks with time-varying delay and Lévy noise. Advances in Difference Equations, 2019, 352:1-23.
[29] Yuan C G, Mao X R. Stability of stochastic delay hybrid systems with jumps. European Journal of Control, 2010, 6:595-608.
[30] Mao X R, Yuan C G. Stochastic Differential Equations with Markovian Switching. London:Imperial College, 2006.
[31] Yin J L, Khoo S, Man Z H, et al. Finite-time stability and instability of stochastic nonlinear systems. Automatica, 2011, 47:2671-2677.
[32] Mei J, Jiang M, Xu W, et al. Finite-time synchronization control of complex dynamical networks with time delay. Communications in Nonlinear Science and Numerical Simulations, 2013, 18(9):2462-2478.
[1] 曹娟, 任凤丽. 耦合网络间的有限时聚类改进投影同步[J]. 系统科学与数学, 2021, 41(5): 1181-1190.
[2] 吴峰, 于洋. PMSM伺服系统的神经网络动态面控制[J]. 系统科学与数学, 2021, 41(5): 1203-1214.
[3] 马盼盼, 于金鹏, 刘加朋, 赵林, 于海生. 基于指令滤波的异步电动机随机有限时间模糊自适应控制[J]. 系统科学与数学, 2021, 41(11): 2987-2999.
[4] 程帅,于金鹏,赵林,于海生. [J]. 系统科学与数学, 2020, 40(12): 2211-2224.
[5] 李钊,李树勇. 一类Markov切换的脉冲随机偏泛函微分方程的均方稳定性分析[J]. 系统科学与数学, 2020, 40(12): 2225-2236.
[6] 孙多青. 基于逼近误差调节的髋关节康复机器人自适应模糊容错控制算法的研究[J]. 系统科学与数学, 2018, 38(9): 971-988.
[7] 杨璐,张成科,朱怀念. 带泊松跳的线性Markov切换系统的随机微分博弈及在金融市场中的应用[J]. 系统科学与数学, 2018, 38(5): 537-552.
[8] 罗世贤,陈武华. 一类随机反应扩散神经网络的周期间歇采样控制[J]. 系统科学与数学, 2017, 37(3): 652-664.
[9] 王平,贾英民. 具有有界输入领航者的二阶非线性多智能体系统的协调跟踪[J]. 系统科学与数学, 2016, 36(9): 1376-1387.
[10] 张小英,柴树根. 基于边界输出反馈非线性波方程的自适应控制稳定性[J]. 系统科学与数学, 2016, 36(2): 157-.
[11] 齐雪,张利军,赵杰梅. Serret-Frenet坐标系下AUV自适应路径跟踪控制[J]. 系统科学与数学, 2016, 36(11): 1851-1864.
[12] 窦晓华,王永. 基于特征模型的永磁同步电机非线性黄金分割自适应控制[J]. 系统科学与数学, 2015, 35(7): 860-870.
[13] 李公军,孟斌. 非最小相位高超声速飞行器自适应动态面控制[J]. 系统科学与数学, 2014, 34(7): 769-779.
[14] 陈杰,陈伟,孙健. 多模型自适应控制研究概述[J]. 系统科学与数学, 2014, 34(12): 1421-1437.
[15] 赵新龙,李智,苏春翌. 基于Bouc-Wen模型的迟滞非线性系统自适应控制[J]. 系统科学与数学, 2014, 34(12): 1496-1507.
阅读次数
全文


摘要