• •    下一篇

自动驾驶测试评价研究综述

余唯之1, 苏奕敏2, 王琳2   

  1. 1. 上汽大众汽车有限公司, 上海 201805;
    2. 上海交通大学电子信息与电气工程学院, 上海 200240
  • 收稿日期:2021-03-07 修回日期:2021-07-06 出版日期:2022-04-20 发布日期:2022-04-20
  • 基金资助:
    上海汽车工业科技发展基金(1904)和国家自然科学基金(61873167)资助课题.

余唯之, 苏奕敏, 王琳. 自动驾驶测试评价研究综述[J]. 系统科学与数学, 2022, 42(3): 495-508.

YU Weizhi, SU Yimin, WANG Lin. Review of Autonomous Driving Test and Evaluation[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(3): 495-508.

Review of Autonomous Driving Test and Evaluation

YU Weizhi1, SU Yimin2, WANG Lin2   

  1. 1. SAIC Volkswagen Automotive Co., Ltd., Shanghai 201805;
    2. School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240
  • Received:2021-03-07 Revised:2021-07-06 Online:2022-04-20 Published:2022-04-20
随着自动驾驶技术研究的兴起,对自动驾驶车辆建立一个科学完善的测试评价体系也逐渐受到重视.自动驾驶车辆的测试评价体系主要包括测试方法,以及评价方案与指标的选取.各个国家也为自动驾驶车辆的技术发展和应用制定了标准和法规,对于评价体系的建立有所帮助.因此,文章针对于自动驾驶车辆的测评研究进行了相关的调研工作,从现状背景、测试方法、评价方案、不同国家政策标准等方面进行了梳理和介绍.现状背景方面介绍自动驾驶车辆测评的意义和应用.测试方法方面具体介绍了蒙特卡洛方法、博弈论方法、测试矩阵评价方法和最坏场景评估方法四种,并详细阐述了对自动驾驶加速测试方法.评价方案方面,文章选取了中国自动驾驶仿真技术研究报告、德国PEGASUS项目、中国智能车未来挑战赛和欧洲AdaptIVe项目四个项目,针对其中的评价方案进行了具体说明,另外,也介绍了其他学术文献中提到的评价方案.最后,文章对中国、美国、欧洲等国家和地区近年来为自动驾驶制定的各类标准和政策进行了整理,并介绍了各国的研究现状、参与研究的公司和现有的仿真软件.
With the rise of research on autonomous driving technology, the establishment of a scientific and complete test and evaluation system for autonomous driving algorithms has gradually attracted attention. The test and evaluation system of autonomous vehicles mainly includes testing methods, as well as the selection of evaluation plans and indicators. Different countries have also formulated standards and regulations for the development and application of autonomous vehicles, which are helpful to the establishment of the evaluation system. Therefore, this article has carried out related research work on the test and evaluation of autonomous vehicles, and introduces from four aspects:Background, testing methods, evaluation plans, different national policy and research. In terms of the background, the significance and application of the test and evaluation of autonomous vehicles are introduced. In terms of testing methods, it specifically introduces Monte Carlo simulations, game theory method, test matrix evaluation and worst-scenario evaluation. Accelerated evaluation of automated vehicles is also introduced. In the aspect of evaluation plans, this article specifically introduces the evaluation plans in Annual Research Report on Autonomous Vehicle Simulation in China, German PEGASUS project, Chinese Intelligent Vehicle Future Challenge and the European AdaptIVe project these four projects. It also introduces the evaluation plans mentioned in other academic literature. Finally, this article briefly introduces the various standards and policies formulated for autonomous driving in China, the United States, Europe and other countries and regions in recent years. Related companies and their simulation software are also introduced.

MR(2010)主题分类: 

()
[1] SAE International. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles:SAE J3016-2018. Warrendale:SAE International, 2018.
[2] 余卓平, 邢星宇, 陈君毅. 自动驾驶汽车测试技术与应用进展. 同济大学学报(自然科学版), 2019, 47(4):540-547. (Yu Z P, Xing X Y, Chen J Y. Review on automated vehicle testing technology and its application. Journal of Tongji University (Natural Science Edition), 2019, 47(4):540-547.)
[3] Ulbrich S, Menzel T, Reschka A, et al. Defining and substantiating the terms scene, situation, and scenario for automated driving. International Conference on Intelligent Transportation Systems, 2015, 982-988.
[4] 朱冰, 张培兴, 赵健,等. 基于场景的自动驾驶汽车虚拟测试研究进展. 中国公路学报, 2019, 32 (6):1-19. (Zhu B, Zhang P X, Zhao J, et al. Review of scenario-based virtual validation methods for automated vehicles. China Journal of Highway and Transport, 2019, 32(6):1-19.)
[5] Althoff M, Mergel A. Comparison of Markov chain abstraction and Monte Carlo simulation for the safety assessment of autonomous cars. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4):1237-1247.
[6] Gietelink O, De Schutter B, Verhaegen M. Probabilistic approach for validation of advanced driver assistance systems. Transportation Research Record:Journal of the Transportation Research Board, 2005, (1910):20-28.
[7] Chater N, Misyak J, Watson D, et al. Negotiating the traffic:Can cognitive science help make autonomous vehicles a reality? Trends in Cognitive Sciences, 2018, 22(2):93-95.
[8] Li N, Oyler D, Zhang M, et al. Hierarchical reasoning game theory based approach for evaluation and testing of autonomous vehicle control systems. IEEE Conference on Decision and Control, 2016, 727-733.
[9] Zhao D. Accelerated evaluation of automated vehicles. Doctor Thesis. University of Michigan, Michigan, 2016.
[10] Ungoren A Y, Peng H. An adaptive lateral preview driver model. Vehicle System Dynamics, 2005, 43(4):245-259.
[11] Kou Y. Development and evaluation of integrated chassis control systems. Doctor Thesis. The University of Michigan, Michigan, 2010.
[12] Zhao D, Peng H, Bao S, et al. Accelerated evaluation of automated vehicles using extracted naturalistic driving data. The Dynamics of Vehicles on Roads and Tracks. Proceedings of the 24th Symposium of the International Association of Vehicle System Dynamics, 2015, 287-296.
[13] Zhao D, Huang X, Peng H, et al. Accelerated evaluation of automated vehicles in car-following maneuvers. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3):733-744.
[14] Huang Z, Zhao D, Lam H, et al. Evaluation of automated vehicles in the frontal cut-in scenario-an enhanced approach using piecewise mixture models. 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016, 197-202.
[15] 51VR. 中国自动驾驶仿真技术研究报告(2019). 北京:51VR, 2019. (51VR. Annual research report on autonomous vehicle simulation in China (2019). Beijing:51VR, 2019.)
[16] PEGASUS. PEGASUS joint project. http://www.pegasusprojekt.de/en/.
[17] 孙扬, 陈慧岩. 无人地面车辆测评体系研究. 兵工学报, 2015, 36(6):978-986. (Sun Y, Chen H Y. Research on test and evaluation of unmanned ground vehicles. Acta Armamentarii, 2015, 36(6):978-986.)
[18] 孙扬, 熊光明, 陈慧岩. 基于Fuzzy-EAHP的无人驾驶车辆智能行为评价. 汽车工程, 2014, 36(1):22-27. (Sun Y, Xiong G M, Chen H Y. Evaluation of the intelligent behaviors of unmanned ground vehicles based on fuzzy-EAHP scheme. Automotive Engineering, 2014, 36(1):22-27.)
[19] 孙扬. 无人驾驶车辆智能水平的定量评价. 博士论文. 北京理工大学,北京, 2014. (Sun Y. Quantitative evaluation of the intelligence level of unmanned vehicles. Doctor Thesis. Beijing Institute of Technology, Beijing, 2014.)
[20] 熊光明. 无人驾驶车辆智能行为及其测试与评价. 北京:北京理工大学出版社, 2015. (Xiong G M. Intelligent Behaviors and Test and Evaluation for Unmanned Ground Vehicles. Beijing:Beijing Institute of Technology Press, 2015.)
[21] Rodarius C, Dufils J, Fahrenkrog F, et al. Deliverable D7.1 Test and Evaluation Plan. AdaptIVe, 2015.
[22] Deliverable D1.0 Test and Evaluation Plan. AdaptIVe, 2017.
[23] 熊璐.自动驾驶汽车测试与评价. (2019) https://www.auto-testing.net/news/show-100414.html. (Xiong L. Test and Evaluation of Autonomous Vehicles. (2019) https://www.auto-testing.net/news/show-100414.html.)
[24] Tong D S, Ajinkya B, Herman V. Simulation-based testing framework for autonomous driving development. 2019 IEEE International Conference on Mechatronics (ICM). IEEE, 2019, 576-583.
[25] Wang G, Deng W, Zhang S, et al. A comprehensive testing and evaluation approach for autonomous vehicles. SAE Technical Paper, 2018, 2018-01-0124.
[26] Meng K, Zhao Y, Gao L, et al. Evaluation of the intelligent behaviors of unmanned ground vehicles based on information theory. Cota International Conference of Transportation Professionals. CICTP, 2015, 410-419.
[27] 孙浩. 考虑交通车辆运动不确定性的轨迹规划方法研究. 博士论文. 吉林大学, 吉林, 2017. (Sun H. Studies on trajectory planning considering motion uncertainties of traffic vehicles. Doctor Thesis. Jilin University, Jilin, 2016.)
[28] 赵盼. 城市环境下无人驾驶车辆运动控制方法的研究. 博士论文. 中国科学技术大学, 合肥, 2012. (Zhao P. Research on motion control approaches of autonomous vehicle in urban environments. Doctor Thesis. University of Science and Technology of China, Hefei, 2012.)
[29] 陈君毅, 李如冰, 邢星宇, 等. 自动驾驶车辆智能性评价研究综述. 同济大学学报(自然科学版), 2019, 47(12):1785-1790, 1824. (Chen J Y, Li R B, Xing X Y, et al. Survey on intelligence evaluation of autonomous vehicles. Journal of Tongji University (Natural Science), 2019, 47(12):1785-1790, 1824.)
[30] Li L, Wang X, Wang K, et al. Parallel testing of vehicle intelligence via virtual-real interaction. Science Robotics, 2019, 4(28):4106-4109.
[31] Li L, Huang W L, Liu Y, et al. Intelligence testing for autonomous vehicles:A new approach. IEEE Transactions on Intelligent Vehicles, 2016, 1(2):158-166.
[32] 周干, 张嵩, 罗悦齐.自动驾驶汽车仿真测试与评价方法进展.汽车文摘, 2019, 519(4):48-51. (Zhou Z, Zhang S, Luo Y Q. Progress in virtual test and evaluation of autonomous vehicle. Automotive Digest, 2019, 519(4):48-51.)
[33] 刘杰. 各国自动驾驶政策概况及特征. https://blog.csdn.net/cf2SudS8x8F0v/article/details/85962989. (Liu J. Overview and characteristics of autonomous driving policies in various countries. https://blog.csdn.net/cf2SudS8x8F0v/article/details/85962989.)
[34] 中国智能网联汽车产业创新联盟. 智能网联汽车自动驾驶功能测试规程(试行). http://www.caicv.org.cn/policy/. (China Industry Innovation Alliance for the Intelligent and Connected Vehicles. Intelligent Network Connection Car Automatic Driving Function Test Procedures (Trial). http://www.caicv.org.cn/policy/.)
[1] 秦寿康. 主成分价值函数模型及评价方案择优方法[J]. 系统科学与数学, 2001, 21(4): 465-472.
阅读次数
全文


摘要