• • 上一篇    下一篇

基于DEA的两阶段系统的利润无效率测量和分解

熊贝贝1, 邹雨晴2, 安庆贤2   

  1. 1. 湖南大学工商管理学院 长沙 410082;
    2. 中南大学商学院 长沙 410083
  • 收稿日期:2021-03-09 修回日期:2021-10-28 出版日期:2022-04-25 发布日期:2022-06-18
  • 通讯作者: 邹雨晴,Email:zouyuqing09@163.com.
  • 基金资助:
    国家自然科学基金(72001075,72171238),国家社科重大项目(21$\&$ZD103),湖南省自科优青基金(2021JJ20072)资助课题.

熊贝贝, 邹雨晴, 安庆贤. 基于DEA的两阶段系统的利润无效率测量和分解[J]. 系统科学与数学, 2022, 42(4): 902-919.

XIONG Beibei, ZOU Yuqing, AN Qingxian. Profit Inefficiency Measurement and Decomposition in a Two-Stage System Based on DEA[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 902-919.

Profit Inefficiency Measurement and Decomposition in a Two-Stage System Based on DEA

XIONG Beibei1, ZOU Yuqing2, AN Qingxian2   

  1. 1. Business School, Hunan University, Changsha 410082;
    2. School of Business, Central South University, Changsha 410083
  • Received:2021-03-09 Revised:2021-10-28 Online:2022-04-25 Published:2022-06-18
The measurement of profit inefficiency has been a hot spot in the economic field, meanwhile, there are some criticisms about these measurement methods, which ignore materials balance principle. Based on the data envelopment analysis method, this paper takes the two-stage system with resource sharing and undesired outputs as the research object, and proposes a profit inefficiency measurement model that satisfies materials balance principle. In addition, this paper also proposes a decomposition method of profit inefficiency, which decomposes profit inefficiency into three components: technical inefficiency, shared resources allocative profit inefficiency, and residual allocative profit inefficiency. Finally, a randomly numerical example is provided to demonstrate our method. Compared to previous decomposition methods, this new method further decomposes profit inefficiency and helps decision-makers to identify the causes of inefficiency more accurately.

MR(2010)主题分类: 

()
[1] Nerlove M. Estimation and Identification of Cobb-Douglas Production Functions, Rand McNally Company. Chicago:Illinois, 1965.
[2] Ruiz J L, Sirvent I. A DEA approach to derive individual lower and upper bounds for the technical and allocative components of the overall profit efficiency. Journal of the Operational Research Society, 2011, 62(11):1907-1916.
[3] Chambers R G, Chung Y, Färe R. Profit, directional distance functions, and Nerlovian efficiency. Journal of Optimization Theory and Applications, 1998, 98(2):351-364.
[4] Cooper W W, Pastor J T, Aparicio J, et al. Decomposing profit inefficiency in DEA through the weighted additive model. European Journal of Operational Research, 2011, 212(2):411-416.
[5] Portela M C A S. Thanassoulis E. Developing a decomposable measure of profit efficiency using DEA. Journal of the Operational Research Society, 2007, 58(4):481-490.
[6] Banker R D, Maindiratta A. Nonparametric analysis of technical and allocative efficiencies in production. Econometrica, 1988, 56:1315-1332.[1] Nerlove M. Estimation and Identification of Cobb-Douglas Production Functions, Rand McNally Company. Chicago:Illinois, 1965.
[2] Ruiz J L, Sirvent I. A DEA approach to derive individual lower and upper bounds for the technical and allocative components of the overall profit efficiency. Journal of the Operational Research Society, 2011, 62(11):1907-1916.
[3] Chambers R G, Chung Y, Färe R. Profit, directional distance functions, and Nerlovian efficiency. Journal of Optimization Theory and Applications, 1998, 98(2):351-364.
[4] Cooper W W, Pastor J T, Aparicio J, et al. Decomposing profit inefficiency in DEA through the weighted additive model. European Journal of Operational Research, 2011, 212(2):411-416.
[5] Portela M C A S. Thanassoulis E. Developing a decomposable measure of profit efficiency using DEA. Journal of the Operational Research Society, 2007, 58(4):481-490.
[6] Banker R D, Maindiratta A. Nonparametric analysis of technical and allocative efficiencies in production. Econometrica, 1988, 56:1315-1332. 918 D 5 o% t o 42-
[7] Aparicio J, Pastor J T, Ray S C. An overall measure of technical inefficiency at the firm and at the industry level:The'lost profit on outlay'. European Journal of Operational Research, 2013, 226(1):154-162.
[8] Färe R, Fukuyama H, Grosskopf S, et al. Decomposing profit efficiency using a slack-based directional distance function. European Journal of Operational Research, 2015, 247(1):335-337.
[9] Yu M M. Nerlovian profit inefficiency in non-fully-competitive settings:Definition and decomposition. Omega, 2020, 90:101993. https://doi.org/10.1016/j.omega.2018.11.002.
[10] Färe R, He X, Li S, Zelenyuk V. A unifying framework for farrell profit efficiency measurement. Operations Research, 2019, 67(1):183-197.
[11] Hoang V N, Coelli T. Measurement of agricultural total factor productivity growth incorporating environmental factors:A nutrients balance approach. Journal of Environmental Economics and Management, 2011, 62(3):462-474.
[12] Rødseth K L. Environmental regulations and allocative efficiency:Application to coal-to-gas substitution in the U.S. electricity sector. Journal of Productivity Analysis, 2017, 47(2):129-142.
[13] Zeng X M, Zhou Z B, Liu Q, et al. Environmental efficiency and abatement potential analysis with a two-stage DEA model incorporating the material balance principle. Computers&Industrial Engineering, 2020, 148:106647.
[14] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units. European Journal of Operational Research, 1978, 2:429-444.
[15] 段永瑞,景一方,李贵萍.基于两阶段DEA方法的中国商业银行效率评价.运筹与管理, 2019, 28(2):118-125.(Duan Y R, Jing Y F, Li G P. Chinese commercial bank efficiency evaluation based on two-stage DEA. Operations Research and Mangement Science, 2019, 28(2):118-125.)
[16] 李根,刘家国,李天琦.考虑非期望产出的制造业能源生态效率地区差异研究——基于SBM和Tobit模型的两阶段分析.中国管理科学, 2019, 27(11):76-87.(Li G, Liu J G, Li T Q. Study on regional differences of manufacturing energy ecoefficiency considering unexpected output. Chinese Journal of Management Science, 2019, 27(11):76-87.)
[17] 叶菲菲,王应明.大气污染区域合作治理策略选择:基于加权DEA的博弈分析.系统科学与数学, 2019, 39(1):37-50.(Ye F F, Wang Y Y. Strategy selection of reginal cooperative governance in air pollution:Game analysis based on weighted DEA. Journal of Systems Science and Mathematical Sciences, 2019, 39(1):37-50.)
[18] Rødseth K L. Axioms of a polluting technology:A materials balance approach. Environmental and Resource Economics, 2017, 67(1):1-22.
[19] Tone K, Tsutsui M. Network DEA:A slacks-based measure approach. European Journal of Operational Research, 2009, 197(1):243-252.
[20] Juo J C, Fu T T, Yu M M, et al. Non-radial profit performance:An application to Taiwanese banks. Omega, 2016, 65:111-121.
[21] Fukuyama H, Weber W L. A directional slacks-based measure of technical inefficiency. SocioEconomic Planning Sciences, 2009, 43(4):274-287.
[1] 蓝以信, 陈烺, 王应明. 考虑具有包容关系的结构异质系统中心化资源配置方法研究[J]. 系统科学与数学, 2021, 41(9): 2406-2424.
[2] 王旭, 王应明, 蓝以信, 温槟檐. 基于双前沿面数据包络分析的区间全局 Meta-frontier Malmquist 指数及其应用研究[J]. 系统科学与数学, 2021, 41(4): 1043-1067.
[3] 黄衍, 尤翠玲, 何霄. 考虑随机分布的中立型区间交叉效率研究[J]. 系统科学与数学, 2021, 41(12): 3517-3529.
[4] 王旭,王应明,温槟檐. 技术异质性视角下中国工业能源环境效率时空演化及其驱动机制研究[J]. 系统科学与数学, 2020, 40(12): 2297-2319.
[5] 叶菲菲,王应明. 大气污染区域合作治理策略选择:基于加权DEA的博弈分析[J]. 系统科学与数学, 2019, 39(1): 37-50.
[6] 陈磊,王应明. 基于前景理论的交叉效率集结方法[J]. 系统科学与数学, 2018, 38(11): 1307-1316.
[7] 鲁涛,王悦,马明. 基于网络~DEA 的共享投入与~(非) 期望产出的两部门并行系统的效率评价-----以中国道路运输业为例[J]. 系统科学与数学, 2017, 37(9): 1976-1987.
[8] 蓝以信,王旭,王应明. 区间型产出下的DEA-Malmquist 生产率指数及其应用研究[J]. 系统科学与数学, 2017, 37(6): 1494-1508.
[9] 蓝以信,王应明. 考虑决策者时间偏好的多时期综合效率评价[J]. 系统科学与数学, 2014, 34(3): 257-272.
[10] 蓝以信,王应明. 考虑决策者时间偏好的多时期综合效率评价[J]. 系统科学与数学, 2014, 34(3): 257-272.
阅读次数
全文


摘要