• • 上一篇    下一篇

考虑缺失属性的多属性群决策方法

付超1,2,3, 盛松1,2,3, 常文军1,2,3   

  1. 1. 合肥工业大学管理学院 合肥 230009;
    2. 过程优化与智能决策 教育部重点实验室 合肥 230009;
    3. 智能决策与信息系统技术教育部工程研究中心 合肥 230009
  • 收稿日期:2021-03-25 修回日期:2021-10-26 出版日期:2022-04-25 发布日期:2022-06-18
  • 通讯作者: 常文军,Email:changwenjay@163.com.
  • 基金资助:
    国家自然科学基金(72171066,72101074),中央高校基本科研业务费专项资金资助(JZ2021HGTA0139,JZ2021HGQA0203)资助课题.

付超, 盛松, 常文军. 考虑缺失属性的多属性群决策方法[J]. 系统科学与数学, 2022, 42(4): 920-934.

FU Chao, SHENG Song, CHANG Wenjun. A Multi-Attribute Group Decision Making Method Considering Missing Attributes[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 920-934.

A Multi-Attribute Group Decision Making Method Considering Missing Attributes

FU Chao1,2,3, SHENG Song1,2,3, CHANG Wenjun1,2,3   

  1. 1. School of Management, Hefei University of Technology, Hefei 230009;
    2. Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009;
    3. Ministry of Education Engineering Research Center for Intelligent Decision-Making and Information Systems Technologies, Hefei 230009
  • Received:2021-03-25 Revised:2021-10-26 Online:2022-04-25 Published:2022-06-18
To solve multi-attribute group decision-making (MAGDM) problems with incomplete attribute sets, an MAGDM method is developed based on the similarity between decision makers in consideration of estimating the assessments on missing attributes. Given the assessment matrices of decision makers on incomplete attribute sets, the similarity between decision makers is constructed by considering the number of the overlapping attributes and the assessments on these attributes simultaneously. Using the constructed similarity, the assessments on the missing attributes are estimated. Furthermore, the complete assessment matrix is aggregated using the weighted averaging approach to generate the ranking order of alternatives for each decision maker. On this basis, an optimization model is constructed to generate the optimal group raking order of alternatives, in which the optimization objective is to minimize the difference between the individual and group ranking orders of alternatives. A strategic project evaluation problem for a manufacturer of high-speed trains located in Changzhou, Jiangsu is solved using the proposed method to demonstrate its effectiveness and applicability.

MR(2010)主题分类: 

()
[1] 超源.决策理论与方法.北京:科学出版社, 2003.(Yue C Y. Decision Theory and Method. Beijing:Science Press, 2003.)
[2] 何大义,陈小玲,许加强.多属性群决策问题中基于最小叉熵的权重集成方法.控制与决策, 2017, 32(2):378-384.(He D Y, Chen X L, Xu J Q. Weight integration method based on minimum cross entropy in multi-attribute group decision-making problems. Control and Decision, 2017, 32(2):378-384.)
[3] Fu C, Chang W J, Yang S L. Multiple criteria group decision making based on group satisfaction. Information Sciences, 2020, 518:309-329.
[4] 任福兵,李玲玲.国外群体决策研究进展.现代情报, 2018, 38(5):172-177.(Ren F B, Li L L. Research progress in group decision-making abroad. Modern Information, 2018, 38(5):172-177.)
[5] 林原,战仁军,吴虎胜.基于犹豫度和相似度的专家权重确定方法及其应用.控制与决策, 2021, 36(6):1482-1488.(Lin Y, Zhan R J, Wu H S. Expert weight determination method based on hesitation and similarity and its application. Control and Decision, 2021, 36(6):1482-1488.)
[6] 刘宏涛,赵希男,侯楠.基于主客体双重视角的专家权重确定方法.统计与决策, 2018, 34(12):34-38.(Liu H T, Zhao X N, Hou N. Expert weight determination method based on the dual perspective of subject and object. Statistics and Decision, 2018, 34(12):34-38.)
[7] 冯源,曹月静.属性和专家客观权重未知的多值中智数群决策方法.数学的实践与认识, 2021, 51(2):68-77.(Feng Y, Cao Y J. Multi-valued neutrosophic number group decision-making with unknown objective weights of criterias and experts. Mathematics in Practice and Theory, 2021, 51(2):68-77.)
[8] 杜秀丽,聂彦刚,吕亚娜,等.基于加权双向投影的决策专家权重确定方法.控制工程, 2021, 68-77, DOI:10.14107/j.cnki.kzgc.20210181.(Du X L, Nie Y G, Lü Y N, et al. A method to determine the weight of decision experts based on weighted bidirectional projection. Control Engineering of China, 2021, 68-77, DOI:10.14107/j.cnki.kzgc.20210181.)
[9] Yager R R. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems Man and Cybernetics, 1988, 18(1):183-190.
[10] 魏翠萍,马京.犹豫模糊语言群决策的共识性模型.控制与决策, 2018, 33(2):275-281.(Wei C P, Ma J. Consensus model for group decision-making in hesitating fuzzy linguistics. Control and Decision, 2018, 33(2):275-281.)
[11] Xue M, Fu C, Yang S L. Group consensus reaching based on a combination of expert weight and expert reliability. Applied Mathematics and Computation, 2020, 369:124902.
[12] 刘金培,杨宏伟,陈华友,等.基于交叉效率DEA与群体共识的区间乘性语言偏好关系群决策.中国管理科学, 2020, 28(2):190-198.(Liu J P, Yang H W, Chen H Y, et al. Group decision making with interval multiplicative linguistic preference relations based on cross-efficiency DEA and group consensus. Chinese Journal of Management Science, 2020, 28(2):190-198.)
[13] Meng F Y, Chen S M, Yuan R P. Group decision making with heterogeneous intuitionistic fuzzy preference relations. Information Sciences, 2020, 523:197-219.
[14] Zhang B W, Dong Y C, Enrique H V. Group decision making with heterogeneous preference structures:An automatic mechanism to support consensus reaching. Group Decision and Negotiation, 2019, 28(3):585-617.
[15] Yu S M, Du Z J, Wang J Q, et al. Trust and behavior analysis-based fusion method for heterogeneous multiple attribute group decision-making. Computers and Industrial Engineering, 2021, 152:106992.
[16] Gao Y, Li D S. A consensus model for heterogeneous multi-attribute group decision making with several attribute sets. Expert Systems with Applications, 2019, 125:69-80.
[17] 代文锋,齐春泽.异构多属性群决策的TOPSIS扩展方法.统计与决策, 2018, 34(4):20-24.(Dai W F, Qi C Z. TOPSIS extension method of heterogeneous multi-attribute group decisionmaking. Statistics and Decision, 2018, 34(4):20-24.)
[18] Lourenzutti R, Krohling R A. A generalized TOPSIS method for group decision making with heterogeneous information in a dynamic environment. Information Sciences, 2016, 330:1-18.
[19] Ribeiro R A, Pereira R A M. Generalized mixture operators using weighting functions:A comparative study with WA and OWA. European Journal of Operational Research, 2003, 145(2):329-342.
[20] Acuna E, Rodriguez C. The treatment of missing values and its effect on classifier accuracy. Classification, clustering, and data mining applications. Springer, Berlin, Heidelberg, 2004, 639-647.
[21] Zhang Y, Zhou B H, Cai X R, et al. Missing value imputation in multivariate time series with end-to-end generative adversarial networks. Information Sciences, 2021, 551:67-82.
[22] Lehmann E L, D'Abrera H J. Nonparametrics:Statistical methods based on ranks. Holden-Day, 1975.
[23] 西北工业大学线性代数编写组.线性代数.北京:科学出版社, 2010, 137-137.(Linear Algebra Writing Group of Northwest University of Technology. Linear Algebra. Beijing:Science Press, 2010, 137-137.)
[24] #214;l?çer Aİ, Odaba?si A Y. A new fuzzy multiple attributive group decis·ion making methodology and its application to propulsion/manoeuvring system selection problem. European Journal of Operational Research, 2005, 166(1):93-114.
[1] 潘晓宏, 王应明. 区间二型模糊前景理论方法及其在多属性决策中的应用[J]. 系统科学与数学, 2021, 41(6): 1533-1547.
[2] 张兴贤, 王应明. 一种考虑证据权重和可靠性的混合型多属性群决策方法[J]. 系统科学与数学, 2021, 41(5): 1305-1327.
[3] 张俊芳,周礼刚,金自强. 基于Pythagorean犹豫模糊熵和交叉熵的绩效评价方法[J]. 系统科学与数学, 2021, 41(2): 436-448.
[4] 肖成龙,张重鹏,王珊珊,张睿,王万里,魏宪. 基于流形正则化与成对约束的深度半监督谱聚类算法[J]. 系统科学与数学, 2020, 40(8): 1325-1341.
[5] 武文顺,李应,倪志伟,朱旭辉,伍章俊. 概率犹豫模糊Maclaurin几何对称平均算子及其群决策模型[J]. 系统科学与数学, 2020, 40(6): 1074-1080.
[6] 魏翠萍,葛淑娜. 犹豫模糊语言幂均算子及其在群决策中的应用[J]. 系统科学与数学, 2016, 36(8): 1308-1317.
[7] 丁若,杨然,杨鹏,徐皓. 航天工程方案决策中的改进专家权重调整算法及应用[J]. 系统科学与数学, 2016, 36(12): 2234-2241.
[8] 秦娟,陈振颂,李延来. 基于改进犹豫模糊熵的群体MULTMOORA决策方法[J]. 系统科学与数学, 2016, 36(12): 2375-2392.
[9] 周晓辉,姚俭. 基于Choquet积分的区间直觉梯形模糊多属性群决策[J]. 系统科学与数学, 2015, 35(2): 245-256.
[10] 左卫兵. 多值逻辑系统中公式的$\mu$-真度理论[J]. 系统科学与数学, 2011, 31(7): 879-892.
[11] 魏翠萍;唐锡晋. 基于可能度的一种直觉模糊集相似度测量方法[J]. 系统科学与数学, 2010, 30(9): 1275-1282.
[12] 李成允;张兴芳. Godel逻辑和L*逻辑中公式的真度分布[J]. 系统科学与数学, 2010, 30(10): 1417-1428.
[13] 于西昌;胡凯;张兴芳. 命题逻辑中概率真度的相似度及伪距离[J]. 系统科学与数学, 2009, 29(12): 1559-1570.
阅读次数
全文


摘要