• • 上一篇
唐旻1,2, 黄志刚1,2
唐旻, 黄志刚. 引入投资者关注度的股指收益率预测研究——基于差分进化算法极限学习机模型[J]. 系统科学与数学, 2022, 42(6): 1503-1518.
TANG Min, HUANG Zhigang. Forecasting Stock Index Return with Investor's Attention: A Research Based on Difference Evolution Extreme Learning Machine[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(6): 1503-1518.
TANG Min1,2, HUANG Zhigang1,2
MR(2010)主题分类:
分享此文:
[1] Lemieux J, Peterson R A.Purchase deadline as a moderator of the effects of price uncertainty on search duration.Journal of Economic Psychology, 2011, 32(1):33-44. [2] Abbas A E, Bakir N O, Klutke G, et al.Effects of risk aversion on the value of information in two-action decision problems.Decision Analysis, 2013, 10(3):257-275. [3] Da Z, Engelberg J, Gao P.In search of attention.The Journal of Finance, 2011, 66(5):1461-1499. [4] Bordino I, Battiston S, Caldarelli G, et al.Web search queries can predict stock market volumes.Plos One, 2012, 7(7):1-46. [5] Dimpfl T, Jank S.Can internet search queries help to predict stock market volatility?.European Financial Management, 2016, 22(2):171-192. [6] 俞庆进,张兵.投资者有限关注与股票收益——以百度指数作为关注度的一项实证研究.金融研究, 2012,(8):152-165.(Yu Q J, Zhang B.Limited attention and stock performance:An empirical study using Baidu Index as the proxy for investor attention.Journal of Financial Research, 2012,(8):152-165.) [7] 陈晓红,彭宛露,田美玉.基于投资者情绪的股票价格及成交量预测研究.系统科学与数学, 2016, 36(12):2294-2306.(Chen X H, Peng W L, Tian M Y.Stock market prediction based on investor sentiment.Journal of Systems Science and Mathematical Sciences, 2016, 36(12):2294-2306.) [8] 陈植元,米雁翔,厉洋军,等.基于百度指数的投资者关注度与股票市场表现的实证分析.统计与决策, 2016,(23):155-157.(Chen Z Y, Mi Y X, Li Y J, et al.Empirical analysis of investor attention and stock market performance based on Baidu Index.Statistics&Decision, 2016,(23):155-157.) [9] Preis T, Moat H S, Stanley H E.Quantifying trading behavior in financial markets using Google Trends.Scientific Reports, 2013, 3(1684):1-6. [10] Curme C, Preis T, Stanley H E, et al.Quantifying the semantics of search behavior before stock market moves.Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(32):11600-11605. [11] Laurens B, Glenn K, Peter M, et al.Google searches and stock returns.International Review of Financial Analysis, 2016, 45:150-156. [12] Salisu A A, Ogbonna A E, Adediran I.Stock-induced Google Trends and the predictability of sectoral stock returns.Journal of Forecasting, 2021, 40(2):327-345. [13] Wen F H, Xu L, Ouyang G, et al.Retail investor attention and stock price crash risk:Evidence from China.International Review of Financial Analysis, 2019, 65(101376):1-15. [14] 赵龙凯,陆子昱,王致远.众里寻"股"千百度——股票收益率与百度搜索量关系的实证探究.金融研究, 2013,(4):183-195.(Zhao L K, Lu Z Y, Wang Z Y.The empirical study on relationship between stock returns and search volume from Baidu.Journal of Financial Research, 2013,(4):183-195.) [15] Dong J C, Dai W, Li J J.Exploring the linear and nonlinear causality between internet big data and stock markets.Journal of Systems Science and Complexity, 2020, 33(3):783-798. [16] Nadia V.Investor attention, index performance, and return predictability.Journal of Banking and Finance, 2014, 41:17-35. [17] Li X, Ma J, Wang S, et al.How does Google search affect trader positions and crude oil prices?.Economic Modelling, 2015, 49:162-171. [18] Jianchun F, Giray G, Chi-Keung M L, et al.The impact of Baidu Index sentiment on the volatility of China's stock markets.Finance Research Letters, 2020, 32(101099):1-8. [19] 瞿慧,沈微.基于LSTHAR模型的投资者关注对股市波动影响研究.中国管理科学, 2020, 28(7):23-34.(Qu H, Shen W.The impact of investor attention on market volatility based on the LSTHAR model.Chinese Journal of Management Science, 2020, 28(7):23-34.) [20] 张同辉,苑莹,曾文.投资者关注能提高市场波动率预测精度吗?——基于中国股票市场高频数据的实证研究.中国管理科学, 2020, 28(11):192-205.(Zhang T H, Yuan Y, Zeng W.Can investor attention help to predict stock market volatility?An empirical research based on Chinese stock market high-frequency data.Chinese Journal of Management Science, 2020, 28(11):192-205.) [21] Wang J Z, Wang J J, Zhang Z G, et al.Forecasting stock indices with back propagation neural network.Expert Systems with Applications, 2011, 38(11):14346-14355. [22] Chin T L, Hsin Y Y.Empirical of the Taiwan stock index option price forecasting model-Applied artificial neural network.Applied Economics, 2011, 41(15):1965-1972. [23] Pan Y C, Xiao Z, Wang X M, et al.A multiple support vector machine approach to stock index forecasting with mixed frequency sampling.Knowledge-Based Systems, 2017, 122:90-102. [24] Ince H, Trafalis T B.Short term forecasting with support vector machines and application to stock price prediction.International Journal of General Systems, 2008, 37(6):677-687. [25] 赛英,张凤廷,张涛.基于支持向量机的中国股指期货回归预测研究.中国管理科学, 2013, 21(3):35-39.(Sai Y, Zhang F T, Zhang T.Research of Chinese stock index futures regression prediction based on support vector machines.Chinese Journal of Management Science, 2013, 21(1):35-39.) [26] Nti I K, Adekoya A F, Weyori B A.Efficient stock-market prediction using ensemble support vector machine.Open Computer Science, 2020, 10(1):153-163. [27] Baek Y, Kim H Y.ModAugNet:A new forecasting framework for stock market index value with an overfitting prevention LSTM module and a prediction LSTM module.Expert Systems with Applications, 2018, 113(12):457-480. [28] Fischer T, Krauss C.Deep learning with long short-term memory networks for financial market predictions.European Journal of Operational Research, 2018, 270(2):654-669. [29] Liu Y.Novel volatility forecasting using deep learning long short term memory recurrent neural networks.Expert Systems with Applications, 2019, 132:99-109. [30] Yang H, Pan Z, Tao Q, et al.Robust and adaptive online time series prediction with long shortterm memory.Computational Intelligence and Neuroscience, 2017, 2017:1-9. [31] Huang G B, Zhu Q Y, Siew C K.Extreme learning machine:A new learning scheme of feedforward neural networks.IEEE International Joint Conference on Neural Networks, 2004:2:985-990. [32] Li X D, Xie H R, Wang R, et al.Empirical analysis:Stock market prediction via extreme learning machine.Neural Computing and Applications, 2016, 27(1):67-78. [33] Wang M G, Zhao L F, Du R J, et al.A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms.Applied Energy, 2018, 220:480-495. [34] Zhu Q Y, Qin A K, Suganthan P S, et al.Evolutionary extreme learning machine.Pattern Recognition, 2005, 38(10):1759-1763. [35] Storn R, Price K.Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces.Journal of Global Optimization, 1997, 11(4):341-359. [36] Kahneman D, Tversky A.Prospect theory:An analysis of decision under risk.Econometrica, 1979, 47(2):263-291. [37] 赵汝为,熊熊,沈德华.投资者情绪与股价崩盘风险:来自中国市场的经验证据.管理评论, 2019, 31(3):50-60.(Zhao R W, Xiong X, Shen D H.Investor sentiment and stock price crash risk:Evidence from China.Management Review, 2019, 31(3):50-60.) [38] 李文辉,王竟竟.基于不同规模指数的中国股票市场周内效应异质性.系统科学与数学,2021, 41(6):1682-1692.(Li W H, Wang J J.Heterogeneity of Day-of-the-Week effect in Chinese stock market based on different scale indexes.Journal of Systems Science and Mathematical Sciences, 2021, 41(6):1682-1692.) [39] Alok K, Charles M C L.Retail investor sentiment and return comovements.The Journal of Finance, 2006, 61(5):2451-2486. [40] 史永东,王谨乐.中国机构投资者真的稳定市场了吗?.经济研究, 2014, 49(12):100-112.(Shi Y D, Wang J L.Have Chinese institutional investors really stabilized the market.Economic Research Journal, 2014, 49(12):100-112.) [41] 史永东,李竹薇,陈炜.中国证券投资者交易行为的实证研究.金融研究, 2009,(12):129-142.(Shi Y D, Li Z W, Chen W.An empirical study on the trading behavior of Chinese securities investors.Journal of Financial Research, 2009,(12):129-142.) [42] 廖理,梁昱,张伟强.谁在中国股票市场中"博彩"?——基于个人投资者交易数据的实证研究.清华大学学报(自然科学版), 2016, 56(6):677-684.(Liao L, Liang Y, Zhang W Q.Who gambles in the Chinese stock market?-Evidence from individual investor trading data set.Journal of Tsinghua University (Science and Technology), 2016, 56(6):677-684.) |
[1] | 钟美瑞,石越,尹力博,张宏伟. 高频视角下投资者关注度对黄金期货市场的影响研究[J]. 系统科学与数学, 2020, 40(11): 1935-1949. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||