• •    

基于量化和攻击下的网络控制系统状态估计控制

周颖, 郑颖, 肖敏   

  1. 南京邮电大学自动化学院、人工智能学院, 南京 210023
  • 收稿日期:2021-06-29 修回日期:2022-03-03 发布日期:2022-08-31
  • 基金资助:
    国家自然科学基金(62073172)资助课题.

周颖, 郑颖, 肖敏. 基于量化和攻击下的网络控制系统状态估计控制[J]. 系统科学与数学, 2022, 42(7): 1633-1647.

ZHOU Ying, ZHENG Ying, XIAO Min. State Estimation Control of Networked Control System Based on Quantization and Attack[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(7): 1633-1647.

State Estimation Control of Networked Control System Based on Quantization and Attack

ZHOU Ying, ZHENG Ying, XIAO Min   

  1. College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023
  • Received:2021-06-29 Revised:2022-03-03 Published:2022-08-31
针对存在欺骗攻击的网络控制系统,对系统状态进行估计并设计了输出反馈控制器.传感器到控制器的网络通道中存在欺骗攻击,传感器发出信号后,设计动态量化器,节省带宽资源;将欺骗攻击建模为未知有界的信号,在此基础上,提出了一种新的状态集员估计方法——椭球估计方法,得到了封闭的状态估计椭球集.将得到的状态估计椭球集参数最小化,使得估计状态近似真实状态.通过设计输出反馈控制器,得到了闭环系统渐近稳定的充分条件.最后,通过数字仿真算例验证了所提方法的有效性.
For the networked control system with deception attack, the state of the system is estimated and the output feedback controller is designed. Suppose that there is a deception attack in the network channel from the sensor to the controller. After the sensor sends a signal, a dynamic quantizer is designed to save bandwidth resources; In this paper, the deception data is modeled as an unknown but bounded signal, and a new set member state estimation method-the ellipsoid estimation method is proposed, and a closed state estimation ellipsoid set is obtained. After that, the parameters of the obtained state estimation ellipsoid set are minimized, so that the estimated state approximates the real state. By designing an output feedback controller, a sufficient condition for the closed-loop system to satisfy asymptotic stability is obtained. Finally, a digital simulation example verifies the effectiveness of the proposed method.

MR(2010)主题分类: 

()
[1] 游科友,谢立华.网络控制系统的最新研究综述.自动化学报, 2013, 39(2):101-118.(You K Y, Xie L H.A review of the latest research on network control systems.Acta Automatica Sinica, 2013, 39(2):101-118.)
[2] 周颖,郑凤,何磊.具有时变时延和丢包的网络控制系统$H_\infty$控制.计算机技术与发展, 2017, 27(5):164-169.(Zhou Y, Zheng F, He L.H∞ control for networked control systems with time-varying delay and packet loss.Computer Technology and Development, 2017, 27(5):164-169.)
[3] Yang H J, Xu H, Zhang J H.Stability analysis on networked control systems under double attacks with predictive control.Int.J.Robust Nonlinear Control, 2020, 30(4):1549-1563.
[4] Kritika B, Pankaj M.Aperiodic sampled-data control of distributed networked control systems with time-delay.Transactions of the Institute of Measurement and Control, 2021, 43(9):1891-1902.
[5] 刘斌,刘义才.区间化时变时延的网络化切换系统建模与控制.控制理论与应用, 2017, 34(7):912-920.(Liu B, Liu Y C.Modeling and control of networked handover system with interval time-varying delay.Control Theory and Applications, 2017, 34(7):912-920.)
[6] Chang X H, Xiong J, Li Z M, et al.Quantized static output feedback control for discrete-time systems.IEEE Transactions on Industrial Informatics, 2017, 14(8):3426-3435.
[7] Du M, Zhou C, Wu Y, et al.Co-design of static quantized scheduling strategy and state feedback control for networked control systems.IEEE Proceedings of the 10th World Congress on Intelligent Control and Automation, 2012, 2192-2187.
[8] Shi P, Wang H, Lim C.Network-based event-triggered control for singular systems with quantizations.IEEE Transactions on Industrial Electronics, 2016, 63(2):1230-1238.
[9] Yang H, Xu Y, Zhang J.Event-driven control for networked control systems with quantization and Markov packet losses.IEEE Transactions on Cybernetics, 2017, 47(8):2235-2243.
[10] Yu M, Bai S, Yang T.Quantized output feedback control of networked control systems with packet dropout.Control Autom.Syst., 2018, 16(5):2559-2568.
[11] 唐晓铭,丁宝苍.具有任意有界丢包的网络控制系统的预测控制.系统工程与电子技术, 2011, 33(10):2295-2300.(Tang X M, Ding B C.Predictive control of network control systems with arbitrary bounded packet loss.System Engineering and Electronic Technology, 2011, 33(10):2295-2300.)
[12] 陈刚,陈云,王炜.基于量化控制的网络控制系统稳定性分析.中南大学学报(自然科学版), 2019, 50(9):2156-2162.(Chen G, Chen Y, Wang W.Stability analysis of network control system based on quantitative control.Journal of Central South University (Natural Science Edition), 2019, 50(9):2156-2162.)
[13] 温丹丽,刘春雨,曹晟熙.具有随机时延和信号量化的$H_\infty$控制.控制工程, 2017, 24(4):775-780.(Wen D L, Liu C Y, Cao S X.H∞ control with random time delay and signal quantization.Control Engineering, 2017, 24(4):775-780.)
[14] 王轶楠,林彦君,李焕,等.DoS攻击下电力网络控制系统脆弱性分析及防御.控制与决策, 2017, 32(3):411-418.(Wang Y N, Lin Y J, Li H, et al.Vulnerability analysis and defense of power network control system under DoS attack.Control and Decision, 2017, 32(3):411-418.)
[15] 王昆玉,韦琳楠,田恩刚.DoS攻击下网络控制系统的记忆型事件触发控制.信息与控制, 2019, 8(5):528-535.(Wang K Y, Wei L N, Tian E G.Memory event trigger control of network control system under DoS attack.Information and Control, 2019, 48(5):528-535.)
[16] Lu A, Yang G.Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service.IEEE Transactions on Automatic Control, 2018, 63(6):1813-1820.
[17] Cao J M, Zhou J F, Chen J, et al.Sliding mode control for discrete-time systems with randomly occurring uncertainties and nonlinearities under hybrid cyber attacks.Circuits, Systems, and Signal Processing, 2021, 40(12):1-22.
[18] Ali K, James L, Zhao C.Adaptive event-triggered mechanism for networked control systems under deception attacks with uncertain occurring probability.International Journal of Systems Science, 2021, 52(7):1426-1439.
[19] Ma L F, Wang Z D, Han Q L, et al.Variance-constrained distributed filtering for time-varying systems with multiplicative noises and deception attacks over sensor networks.IEEE Sensors Journal, 2017, 17(7):2279-2288.
[20] Zhang Y L, Zhu Y F, Fan Q Q.A novel set-membership estimation approach for preserving security in networked control systems under deception attacks.Neurocomputing, 2020, 400:440-449.
[21] Qu Y, Pang K.State estimation for a class of artificial neural networks subject to mixed attacks:A set-membership method.Neurocomputing, 2020, 411:239-246.
[22] Boyd S, Ghaoui L E, Feron E, et al.Linear Matrix Inequalities in System and Control Theory.Philadelphia:SIAM Studies in Applied Mathematics, 1994.
[23] Velliangiri S, Karthikeyan P, Vinoth K V.Detection of distributed denial of service attack in cloud computing using the optimization-based deep networks.Journal of Experimental&Theoretical Artificial Intelligence, 2021, 33(3):405-424.
[24] 俞武扬.YALMIP工具箱在运筹学实验教学中的应用.实验室研究与探索, 2017, 36(8):274-278.(Yu W Y.The application of YALMIP toolbox in the experimental teaching of operations research.Laboratory Research and Exploration, 2017, 36(8):274-278.)
[1] 吴红星,程国飞,王胜华. 细菌种群增生中Rotenberg模型解的渐近稳定性研究[J]. 系统科学与数学, 2020, 40(9): 1539-1549.
[2] 杨阳,田野,刘智,陈国陆. 真三维显示系统的Roesser模型及其性能分析[J]. 系统科学与数学, 2019, 39(4): 534-544.
[3] 李钊,李树勇. 比较原理与一类具有时滞和马尔科夫切换的随机抛物方程组的稳定性分析[J]. 系统科学与数学, 2019, 39(4): 648-658.
[4] 倪洪杰,何德峰,俞立. 轮式移动舞台机器人双模模型预测控制[J]. 系统科学与数学, 2018, 38(11): 1229-1239.
[5] 陈辉,徐瑞. 一类含潜伏期和CTL免疫反应的病毒感染模型的全局渐近稳定性[J]. 系统科学与数学, 2017, 37(2): 632-640.
[6] 刘萍,李伟银,郭清才. 具不同发展阶段和共生关系企业集群系统的持久性和概周期解一致渐近稳定性[J]. 系统科学与数学, 2016, 36(8): 1187-1202.
[7] 张婷,李俊民. 基于${\it\Sigma}\Delta$量化的多智能体系统的量化一致性[J]. 系统科学与数学, 2016, 36(5): 617-632.
[8] 刘凯,慕小武. 有限通信数据率下二阶连续多自主体系统的一致性研究[J]. 系统科学与数学, 2016, 36(3): 381-389.
[9] 杜大军,漆波,费敏锐. 多通道异构网络诱导延时约束下网络化控制系统的量化控制研究[J]. 系统科学与数学, 2015, 35(4): 397-406.
[10] 陈东彦,于浍. 状态饱和2-D离散系统的稳定性分析[J]. 系统科学与数学, 2014, 34(2): 171-178.
[11] 刘凯,幕小武. 具有观测器的多自主体系统有限数据率一致性研究[J]. 系统科学与数学, 2014, 34(11): 1379-1390.
[12] 段广仁. 不确定二阶时变系统的稳定鲁棒性[J]. 系统科学与数学, 2014, 34(10): 1192-1205.
[13] 芮万智, 江汉红, 刘亮. 分布时延网络控制系统的${\bm H}_{\bm \infty}$优化控制[J]. 系统科学与数学, 2014, 34(1): 77-85.
[14] 徐晟,周少波. 马尔科夫切换型资产定价模型随机theta方法的稳定性[J]. 系统科学与数学, 2013, 33(10): 1210-1223.
[15] 蒋松,罗勇. 一类扩散Holling-Tanner模型行波解的存在性[J]. 系统科学与数学, 2012, 32(8): 1011-1018.
阅读次数
全文


摘要