• • 上一篇    下一篇

多元多项式矩阵等价的进一步结果

李冬梅, 桂盈盈   

  1. 湖南科技大学数学与计算科学学院, 湘潭 411201
  • 收稿日期:2021-07-24 修回日期:2021-10-23 出版日期:2021-12-25 发布日期:2022-03-16
  • 基金资助:
    国家自然科学基金(11871207)资助课题.

李冬梅, 桂盈盈. 多元多项式矩阵等价的进一步结果[J]. 系统科学与数学, 2021, 41(12): 3299-3310.

LI Dongmei, GUI Yingying. Further Results on the Equivalence of Multivariate Polynomial Matrices[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(12): 3299-3310.

Further Results on the Equivalence of Multivariate Polynomial Matrices

LI Dongmei, GUI Yingying   

  1. School of Mathematics and Computing Sciences, Hunan University of Science and Technology, Xiangtan 411201
  • Received:2021-07-24 Revised:2021-10-23 Online:2021-12-25 Published:2022-03-16
多维系统常用多项式矩阵来描述,系统理论中的多维系统等价问题也常被转化为多项式矩阵等价问题进行研究.文章主要研究两类多元多项式矩阵的等价问题,得到这些矩阵分别与其Smith型等价的判别条件.这些条件的检验是比较容易实现的,文章中也通过具体的等价实例进行说明.
Multidimensional systems are often described by polynomial matrices, and problems on the equivalence of multidimensional systems in system theory are often transformed into problems on the equivalence of polynomial matrices. In this paper, we mainly study the equivalence of two kinds of multivariate polynomial matrices, and obtain the discriminant conditions for the equivalence of these matrices and their Smith forms, respectively. The conditions are easily verified, and an example is also used to illustrate these in the paper.

MR(2010)主题分类: 

()
[1] Bose N. Applied Multidimensional Systems Theory. New Work:Van Nostrand Reinhold, 1982.
[2] Bose N, Buchberger B, Guiver J. Multidimensional Systems Theory and Applications. Dordrecht, The Netherlands:Kluwer, 2003.
[3] Rosenbrock H. State Space and Multivariate Theory. London, New York:Nelson-Wiley, 1970.
[4] Frost M, Boudellioua B. Some further results concerning matrices with elements in a polynomial ring. Int. J. Control, 1986, 43(5):1543-1555.
[5] Frost M, Storey C. Euivalence of a matrix over R[s, z] with its Smith form. Int. J. Control, 1979, 28(5):665-671.
[6] Fronasini E. nD polynimial matrices with applications to multimensional signal analysis. Multidimensional Systems and Signal Processing, 1997, 8:387-408.
[7] Liu J, Wang M. New results on multivariate polynomial matrix factorizations. Linear Algebra and Its Applicationgs, 2013, 438:87-95.
[8] Lin Z, Boudellioua M, Xu L. On the equivalence and factorization of multivariate polynomial matrices. Proceeding of the IEEE, 2006, 4911-4914.
[9] Lin Z. On matrix faction descriptions of multivariable linear n-D systems. IEEE Trans. Circuits Syst. I, 2007, 54:1298-1405.
[10] Liu J, Li D, Zheng L. The Lin-Bose problem. IEEE Trans. Circuits Syst. II, 2014, 61:41-43.
[11] Li D, Liu J, Zheng L. On the equivalence of multivariate polynomial matrix. Multidim Syst. Sign Process, 2017, 28:225-235.
[12] Lu D, Wang D, Xiao F. Further results on the factorization and equivalence for multivariate polynomial matrices. Proceedings of ISSAC, 2020, 328-335.
[13] Li D, Liang R. Serre's reduction and the Smith forms of multivariate polynomial matrices. Mathematical Problems in Engineering, 2020, 50-66.
[14] Li D, Liu J, Zheng L. On Serre reduction of multidimensional systems. Mathematical Problems in Engineering, 2020, 1-13.
[15] Li D, Liu J, Chu D. The Smith form of a multivariate polynomial matrix over an arbitrary coefficient field. Linear and Multilinear Algebra, 2020, 1-14.
[1] 李冬梅,粱芮,刘金旺. 二元多项式矩阵Smith型的进一步结果[J]. 系统科学与数学, 2019, 39(12): 1983-1997.
[2] 刘金旺,陈彬,陈小松. n元多项式矩阵有MLP分解的新判别算法[J]. 系统科学与数学, 2012, 32(8): 957-963.
[3] 刘金旺;陈斌. Lin-Bose问题的进一步研究[J]. 系统科学与数学, 2010, 30(11): 1535-1539.
[4] 王明生. 多变量多项式矩阵素分解的结果和问题[J]. 系统科学与数学, 2009, 29(9): 1249-1255.
[5] 许可康;高志强. 多项式矩阵方程及线性控制系统[J]. 系统科学与数学, 2000, 20(3): 280-284.
阅读次数
全文


摘要