• • 上一篇    

输入饱和时变参数不确定离散时间系统的预见控制

李丽1,2, 卢延荣3   

  1. 1. 湖北经济学院信息管理与统计学院, 武汉 430205;
    2. 湖北经济学院湖北数据与分析中心, 武汉 430205;
    3. 兰州理工大学电气工程与信息工程学院, 兰州 730050
  • 收稿日期:2021-08-22 修回日期:2021-12-05 发布日期:2022-07-29
  • 基金资助:
    国家自然科学基金(61903130),甘肃省青年科技基金计划(21JR7RA246),山东省自然科学基金(ZR2020QA036),湖北经济学院科研培育项目(PYYB202007,PYZD202005)资助课题.

李丽, 卢延荣. 输入饱和时变参数不确定离散时间系统的预见控制[J]. 系统科学与数学, 2022, 42(6): 1438-1453.

LI Li, LU Yanrong. Preview Control for Discrete-Time Polytopic Time-Varying Systems with Input Saturation[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(6): 1438-1453.

Preview Control for Discrete-Time Polytopic Time-Varying Systems with Input Saturation

LI Li1,2, LU Yanrong3   

  1. 1. School of Information Management and Statistics, Hubei University of Economics, Wuhan 430205;
    2. Hubei Center for Data and Analysis, Hubei University of Economics, Wuhan 430205;
    3. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050
  • Received:2021-08-22 Revised:2021-12-05 Published:2022-07-29
针对一类时变参数饱和离散时间系统,为了实现系统预见跟踪性能,文章提出了一种目标值信号预见补偿控制方法.首先,引入一个与状态变量有关的辅助变量,构造出包含目标值信号未来信息的扩大误差系统,将原系统的预见跟踪问题转化为扩大误差系统的H控制问题;然后,针对所推导的扩大误差系统,采用一种改进后的扇形条件处理饱和项,并提出一个带有预见作用的状态反馈.基于Lyapunov稳定性理论和线性矩阵不等式(LMI)技巧,给出闭环系统渐近稳定的充分条件及预见控制器的设计方法.通过求解LMI,确定预见控制器增益矩阵.数值仿真表明文章结果的有效性.
For a class of uncertain discrete-time systems with time-varying polytopic and input saturation, a control method of reference preview compensation is proposed to achieve preview tracking performance in this paper. First, an auxiliary variable related to the state variable is introduced to constructed the augmented error system including previewed information. This leads to the preview control problem of the original system is transformed into the H control problem of the augmented error system. Then, for the augmented error system, a sector condition handles saturation is proposed to deal with the input saturation and a state feedback with preview actions is presented. Based on Lyapunov method and LMI technique, the conditions of asymptotic stability of the closed-loop system and the design method of the preview controller are given. The preview controller's gain matrix is obtained by solving LMI. Finally, the effectiveness of the results in this paper is illustrated by numerical simulation examples.

MR(2010)主题分类: 

()
[1] Sheridan T B.Three models of preview control.IEEE Transactions on Human Factors in Electronics, 1966, 7(2):91-102.
[2] Tomizuka M.Optimal continuous finite preview problem.IEEE Transactions on Automatic Control, 1975, 20(3):362-365.
[3] Tomizuka M, Whitney D E.Optimal discrete finite preview problems (why and how is future information important?).Journal of Dynamic Systems, Measurement, and Control, 1975, 97(4):319-325.
[4] Katayama T, Hirono T.Design of an optimal servomechanism with preview action and its dual problem.International Journal of Control, 1987, 45(2):407-420.
[5] Liao F C, Ren Z Q, Tomizuka M, et al.Preview control for impulse-free continuous-time descriptor systems.International Journal of Control, 2015, 88(6):1142-1149.
[6] Zhao L, Sun F Q, Ren J C, et al.Optimal preview control for a class of continuous time-invariant descriptor systems.Optimal Control Applications and Methods, 2016, 37(2):279-289.
[7] Lu Y R, Liao F C, Deng J M, et al.Cooperative optimal preview tracking for linear descriptor multi-agent systems.Journal of the Franklin Institute, 2019, 356(2):908-934.
[8] Zhao L, Sun F Q, Ren J C, et al.Optimal preview control for a class of continuous time-invariant descriptor systems.Optimal Control Applications and Methods, 2016, 37(2):279-289.
[9] 李琳,谭跃刚.基于目标预见时间的空间目标的轨迹跟踪控制.制造业自动化, 2010, 32(7):199-201.(Li L, Tan Y G.The space goal orbit tracking control based of goal preview time.Manufacturing Automation, 2010, 32(7):199-201.)
[10] Liao F C, Wnag J, Yang G H.Reliable robust preview tracking control against actuator faults.Asian Journal of Control, 2003, 5(1):124-131.
[11] Li L, Liao F C.Parameter-dependent preview control with robust tracking performance.IET Control Theory&Applications, 2017, 11(1):38-46.
[12] Li L, Liao F.Robust preview control for a class of uncertain discrete-time systems with timevarying delay.ISA Transactions, 2018, 73:11-21.
[13] Li L, Liao F C, Deng J M.H∞ preview control of a class of uncertain discrete-time systems.Asian Journal of Control, 2017, 19(4):1542-1556.
[14] Li L.Observer-based preview repetitive control for uncertain discrete-time systems.International Journal of Robust&Nonlinear Control, 2021, 31(4):1103-1121.
[15] Lan Y H, He J L, Li P, et al.Optimal preview repetitive control with application to permanent magnet synchronous motor drive system.Journal of the Franklin Institute, 2020, 357(15):10194-10210.
[16] Li L, Liao F C.Output feedback preview tracking control for discrete-time polytopic time-varying systems.International Journal of Control, 2019, 92(12):2979-2989.
[17] Han K Z, Feng J.Fault tolerant tracking control for a class of linear parameter varying systems using reduced-order simultaneous estimator and optimal preview policy.International Journal of Systems Science, 2020, 51(2):313-333.
[18] 杨浩,裴海龙.一类输入饱和非仿射非线性系统的模型预测控制.控制理论与应用, 2021, 38(4):425-432.(Yang H, Pei H L.Nonlinear dynamic inversion approach for a class of nonaffine nonlinear systems with input saturation.Control Theory&Applications, 2021, 38(4):425-432.)
[19] 周琪,陈广登,鲁仁全,等.基于干扰观测器的输入饱和多智能体系统事件触发控制.中国科学:信息科学, 2019, 49(11):1502-1516.(Zhou Q, Chen G D, Lu R Q, et al.Disturbance-observer-based event-triggered control for multiagent systems with input saturation.Scientia Sinica Informationis, 2019, 49(11):1502-1516.)
[20] 周章勇,邵书义,胡伟.输入饱和情形下战斗机大机动动态面控制.北京航空航天大学学报, 2021, 47(2):247-254.(Zhou Z Y, Shao S Y, Hu W.High-g maneuver dynamic surface control of fighter plane under input saturation.Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2):247-254.)
[21] 石厅.不确定输入饱和系统的鲁棒控制研究.博士论文.浙江大学,杭州, 2009.(Shi T.Study on robust control for uncertain systems with actuator saturation.Doctoral thesis.Zhejiang University, Hangzhou, 2009.)
[22] Nguyen A T, Chevrel P, Claveau F.Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations.Automatica, 2018, 89:420-424.
[23] Ma Y C, Jia X R, Liu D Y.Finite-time dissipative control for singular discrete-time Markovian jump systems with actuator saturation and partly unknown transition rates.Applied Mathematical Modelling, 2018, 53:49-70.
[24] Cui Y F, Hu J, Wu Z H, et al.Finite-time sliding mode control for networked singular Markovian jump systems with packet losses:A delay-fractioning scheme.Neurocomputing, 2020, 385:48-62.
[25] Zhang J H, Lam J, Xia Y Q.Output feedback delay compensation control for networked control systems with random delays.Information Sciences, 2014, 265:154-166.
[1] 李丽, 廖永龙, 孟晓华. 周期离散时间系统的$L_{2}$-$L_{\infty}$预见控制[J]. 系统科学与数学, 2022, 42(5): 1113-1128.
[2] 李莉, 张耀峰, 于晓. 参数不确定广义离散时间系统的预见重复控[J]. 系统科学与数学, 2021, 41(7): 1788-1806.
[3] 冯攀,吴笛,朱文武,都海波. 输入饱和受限的多个四旋翼飞行器分布式编队控制[J]. 系统科学与数学, 2020, 40(1): 1-14.
[4] 张晓丹,刘开恩,纪志坚. 具有时变时滞多智能体系统二分一致性[J]. 系统科学与数学, 2018, 38(8): 841-851.
[5] 吴鸿娟,胡翔,吴艳秋,冯玉明. 基于一种半间歇控制的忆阻超混沌电路的同步[J]. 系统科学与数学, 2018, 38(8): 881-890.
[6] 郭一军,俞立,徐建明. 具有控制输入约束的轮式移动机器人轨迹跟踪最优保性能控制[J]. 系统科学与数学, 2017, 37(8): 1757-1769.
[7] 罗世贤,陈武华. 一类随机反应扩散神经网络的周期间歇采样控制[J]. 系统科学与数学, 2017, 37(3): 652-664.
[8] 徐姝婕,程培,贲顺琦. 不确定脉冲随机系统的几乎必然指数稳定和随机镇定[J]. 系统科学与数学, 2017, 37(1): 10-22.
[9] 曾亮. 新时变参数灰色预测模型及其应用[J]. 系统科学与数学, 2017, 37(1): 143-154.
[10] 黄玲,孙敏. 区间时变时滞Markov跳变系统的一种改进稳定性分析方法[J]. 系统科学与数学, 2016, 36(7): 995-1005.
[11] 刘安东,孙辉,俞立,张文安. 通信约束广域电力系统的分布式模型预测控制[J]. 系统科学与数学, 2016, 36(6): 749-758.
[12] 沈虹. 基于LMI优化算法的非均衡蛛网模型多目标控制[J]. 系统科学与数学, 2016, 36(10): 1548-1556.
[13] 王硕,禹梅,谭文. 具有丢包补偿网络化控制系统的量化反馈稳定性分析[J]. 系统科学与数学, 2015, 35(3): 287-297.
[14] 高玉兰,于俊燕,禹梅. 带有时滞的离散多智能体系统的$H_{\infty}$ 一致性问题[J]. 系统科学与数学, 2015, 35(3): 317-326.
[15] 赵彦,于江波,田洁. 一类非线性系统的输出反馈跟踪控制[J]. 系统科学与数学, 2014, 34(7): 853-861.
阅读次数
全文


摘要