• •    下一篇

联盟缺额合意性与均分不可分贡献值

邹荣, 徐根玖   

  1. 西北工业大学数学与统计学院 西安 710129
  • 收稿日期:2021-09-15 修回日期:2022-01-19 出版日期:2022-04-25 发布日期:2022-06-18
  • 通讯作者: 徐根玖,Email:xugenjiu@nwpu.edu.cn.
  • 基金资助:
    国家重点研发计划(2021YFA1000400),国家自然科学基金(72071159,71671140),国家留学基金(202006290073)资助课题

邹荣, 徐根玖. 联盟缺额合意性与均分不可分贡献值[J]. 系统科学与数学, 2022, 42(4): 780-790.

ZOU Rong, XU Genjiu. Coalitional Gap Desirability and the Equal Allocation of Non-Separable Contributions Value[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 780-790.

Coalitional Gap Desirability and the Equal Allocation of Non-Separable Contributions Value

ZOU Rong, XU Genjiu   

  1. School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129
  • Received:2021-09-15 Revised:2022-01-19 Online:2022-04-25 Published:2022-06-18
In this paper, we firstly provide an axiom for solutions of TU games, called the coalitional gap desirability (CGD), by adapting the recent coalitional surplus desirability (Hu, 2019). It is verified that no solution satisfies both the CGD and the classical efficiency except for the trivial situation where there are no more than two players in a cooperative game. We then introduce an adapted axiom by averaging coalitions’ gap, namely the average coalitional gap desirability. The equal allocation of nonseparable contributions value (ENSC value) is axiomatized by this averaged version together with the efficiency and additivity axioms. Finally, the axiomatic results are extended to the weighted ENSC value (Hou, et al., 2019).

MR(2010)主题分类: 

()
[1] Shapley L S. A value for n-person games. Contributions to the Theory of Games II, Annals of Mathematics Studies. Princeton:Princeton University Press, 1953, 307-317.
[2] Driessen T S H, Funaki Y. Coincidence of and collinearity between game theoretic solutions. OR Spektrum, 1991, 13(1):15-30.
[3] Moulin H. The separability axiom and equal-sharing methods. J. Econ. Theory, 1985, 36(1):120-148.
[4] Gillies D B. Some theorems on n-person games. PhD Thesis. Princeton:Princeton University Press, 1954.
[5] Hu X F, Li D F. The equal surplus division value for cooperative games with a level structure. Group Decis. Negotiat., 2021, 30:1315-1341.[1] Shapley L S. A value for n-person games. Contributions to the Theory of Games II, Annals of Mathematics Studies. Princeton:Princeton University Press, 1953, 307-317.
[2] Driessen T S H, Funaki Y. Coincidence of and collinearity between game theoretic solutions. OR Spektrum, 1991, 13(1):15-30.
[3] Moulin H. The separability axiom and equal-sharing methods. J. Econ. Theory, 1985, 36(1):120-148.
[4] Gillies D B. Some theorems on n-person games. PhD Thesis. Princeton:Princeton University Press, 1954.
[5] Hu X F, Li D F. The equal surplus division value for cooperative games with a level structure. Group Decis. Negotiat., 2021, 30:1315-1341. 790 r^3 Z X 342 W
[6] Hou D S, Lardon A, Sun P F, et al. Procedural and optimization implementation of the weighted ENSC value. Theory and Decis., 2019, 87:171-182.
[7] Zheng X X, Li D F, Liu Z, et al. Willingness-to-cede behaviour in sustainable supply chain coordination. Int. J. Prod. Econ., 2021, 240:108207.
[8] Ju Y, Wettstein D. Implementing cooperative solution concepts:A generalized bidding approach. Econ. Theory., 2009, 39(2):307-330.
[9] Sun P F, Hou D S, Sun H, et al. Optimization implementation and characterization of the equal allocation of nonseparable costs value. J. Optim. Theory Appl., 2017, 173:336-352.
[10] van den Brink R. Null or nullifying players:The difference between the Shapley value and equal division solutions. J. Econ. Theory, 2007, 136:767-775.
[11] Chun Y, Park B. Population solidarity, population fair-ranking, and the egalitarian value. Int. J. Game Theory, 2012, 41:255-270.
[12] Casajus A, Huettner F. Null, nullifying, or dummifying players:The difference between the Shapley value, the equal division value, and the equal surplus division value. Econom. Lett., 2014, 122:167-169.
[13] Ferri`eres S. Nullified equal loss property and equal division values. Theory Decis., 2017, 83:385-406.
[14] Kongo T. Similarities in axiomatizations:Equal surplus division value and first-price auctions. Rev. Econ. Des., 2020, 24:199-213.
[15] Hwang Y A. Associated consistency and equal allocation of nonseparable costs. Econ. Theory, 2006, 28(3):709-719.
[16] Xu G J, van den Brink R, Gerard V D L, et al. Associated consistency characterization of two linear values for TU games by matrix approach. Linear Algebra Appl., 2015, 471:224-240.
[17] Hamiache G. Associated consistency and Shapley value. Int. J. Game Theory, 2001, 30(2):279-289.
[18] Béal S, Deschamps M, Solal P. Comparable axiomatizations of two allocation rules for cooperative games with transferable utility and their subclass of data games. J. Public Econ. Theory, 2016, 18(6):992-1004.
[19] Myerson R B. Conference structures and fair allocation rules. Int. J. Game Theory, 1980, 9(3):169-182.
[20] Maschler M, Peleg B. A characterization, existence proof and dimension bounds for the kernel of a game. Pac. J. Math., 1966, 18(2):117-141.
[21] Casajus A, Huettner F. Null players, solidarity, and the egalitarian Shapley values. J. Math. Econ., 2013, 49(1):58-61.
[22] Malawski M. "Procedural" values for cooperative games. Int. J. Game Theory, 2013, 42(1):305-324.
[23] Béal S, Rémila E, Solal P. Axiomatization and implementation of a class of solidarity values for TU-games. Theory and Decis., 2017, 83(1):61-94.
[24] Béal S, Rémila E, Solal P. Coalitional desirability and the equal division value. Theory and Decis., 2019, 86(1):95-106.
[25] Hu X F. Coalitional surplus desirability and the equal surplus division value. Econom. Lett., 2019, 179:1-4.
[1] 张广, 何楠. 合作博弈的比例分离解及其在区域经济一体化中的应用[J]. 系统科学与数学, 2022, 42(4): 791-801.
[2] 冯海荣, 周永务, 曾银莲, 钱茜. 基于不平等厌恶的易变质品供应链合作的利他收益分配[J]. 系统科学与数学, 2021, 41(9): 2460-2476.
[3] 钱艺平, 林祥, 操君陶.  离散时间多期两个投资者之间的合作投资选择博弈[J]. 系统科学与数学, 2021, 41(11): 3109-3127.
[4] 梁开荣,李登峰,余高峰.  基于两型博弈的双边链路形成策略优化研究[J]. 系统科学与数学, 2020, 40(9): 1550-1563.
[5] 李桂君,寇晨欢,胡军,李慧嘉. 云服务资源调度机制的协同与优化研究[J]. 系统科学与数学, 2020, 40(8): 1365-1383.
[6] 叶银芳,李登峰,余高锋. 需求为三角模糊数的联合订货模型及其成本分摊方法[J]. 系统科学与数学, 2019, 39(7): 1142-1158.
[7] 周珍,崔笑颖,张美佳,林云.  雾霾治理限制性合作博弈与成本分摊研究[J]. 系统科学与数学, 2019, 39(6): 875-887.
[8] 于晓辉,周珍,杜志平. 产业集群背景下模糊联盟结构合作博弈的核心[J]. 系统科学与数学, 2019, 39(6): 934-943.
[9] 杨洁,刘家财. 带风险偏好的区间支付交流结构合作博弈及平均树解[J]. 系统科学与数学, 2019, 39(5): 733-742.
[10] 南江霞,关晶,李登峰. 求解一类直觉模糊联盟合作博弈Shapley 值的新方法[J]. 系统科学与数学, 2019, 39(4): 611-621.
[11] 冯海荣,曾银莲. 线性数量折扣下零售商合作的联盟稳定性研究[J]. 系统科学与数学, 2018, 38(9): 989-1001.
[12] 魏针,李登峰. 基于合作博弈的招生计划分配优化模型研究[J]. 系统科学与数学, 2018, 38(10): 1160-1171.
[13] 冯海荣,李军,曾银莲. 基于两级信用支付的易腐品联合采购博弈分析[J]. 系统科学与数学, 2017, 37(1): 125-142.
[14] 李泉林,杨碧蕊,鄂成国,段灿. 大型并行服务系统的利润分配机制设计[J]. 系统科学与数学, 2016, 36(2): 169-.
[15] 李泉林,黄亚静,鄂成国. 农超对接下农业合作社联盟的排队网络型合作博弈研究[J]. 系统科学与数学, 2016, 36(11): 1972-1985.
阅读次数
全文


摘要