• • 上一篇    

基于最近目标交叉视角下的环境效率评估方法

李美娟1,2, 张家榕1, 王海燕1, 徐林明3   

  1. 1. 福州大学经济与管理学院, 福州 350108;
    2. 福建省社科研究基地福州大学福建经济高质量发展研究中心, 福州 350108;
    3. 福建工程学院管理学院, 福州 350118
  • 收稿日期:2021-11-26 修回日期:2022-01-20 发布日期:2022-08-31
  • 通讯作者: 王海燕,Email:why0806@126.com.
  • 基金资助:
    国家自然科学基金项目(71872047),福建省创新战略研究计划项目(2021R0077),福建省百千万人才工程省级人选,福建省高校领军人才资助课题.

李美娟, 张家榕, 王海燕, 徐林明. 基于最近目标交叉视角下的环境效率评估方法[J]. 系统科学与数学, 2022, 42(7): 1740-1752.

LI Meijuan, ZHANG Jiarong, WANG Haiyan, XU Linming. Evaluation Method of Environmental Cross Efficiency From the Perspective of the Closest Target[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(7): 1740-1752.

Evaluation Method of Environmental Cross Efficiency From the Perspective of the Closest Target

LI Meijuan1,2, ZHANG Jiarong1, WANG Haiyan1, XU Linming3   

  1. 1. School of Economics and Management, Fuzhou University, Fuzhou 350108;
    2. Funding for Research Center of Fujian Economic High Quality Development Based on Social Science Planning of Fujian Province in China, Fuzhou 350108;
    3. School of Management, Fujian University of Technology, Fuzhou 350118
  • Received:2021-11-26 Revised:2022-01-20 Published:2022-08-31
数据包络分析方法由于其非参性和客观性而被广泛应用于环境效率评估.基于最远目标数据包络分析通过最大化松弛变量来确定改进目标,在进行环境效率评估时存在面临巨大改进难度和高昂改进费用的缺陷.现有的基于最近目标的数据包络分析虽然有助于低效率决策单元以更小的变化达到高效,但大多是从自评角度出发,存在效率虚高的问题.针对这个问题,文章首先结合RAM模型,在考虑环境效率测度特点的基础之上,提出考虑非期望产出的最远目标RAM模型和最近目标RAM模型;然后指出此类模型存在的缺陷;在此基础之上,结合非径向方向距离函数,提出考虑环保性原则的最近目标环境交叉测度模型,从最近目标交叉视角出发测算各地区的环境效率,并利用熵权进行效率集结,使评估结果更具可靠性.最后,以福建省9个地市的环境效率为例,通过与不同环境效率测算方法对比,验证该方法具有较强的有效性和实用性.
Data envelopment analysis (DEA) is widely used in environmental efficiency assessment due to its nonparametric and objective nature. Data envelopment analysis based on the farthest target determines improvement targets by maximizing slack variables, which is difficult to improve and expensive to improve. Although the existing data envelopment analysis based on the closest target can help the inefficient decision making unit to achieve the high efficiency with smaller changes, most of them are from the perspective of self-evaluation and have the problem of high efficiency. In order to solve this problem, the range adjusted measure (RAM) model is firstly combined with DEA model, and considering the characteristics of environmental efficiency measurement, the farthest target RAM model and the closest target RAM model considering the undesired output is proposed. Then the defects of such models are pointed out. On this basis, combined with the non-radial distance function, the closest target environmental cross measure model considering the principle of environmental protection was proposed to calculate the environmental cross efficiency of each region from the perspective of the closest target. And the entropy weight was used to aggregate the efficiency to make the assessment results more reliable. Finally, taking the environmental efficiency of nine cities in Fujian province as an example, the effectiveness and practicability of this method are verified by comparing with different methods.

MR(2010)主题分类: 

()
[1] 田泽,潘晶晶,任芳容,等.大保护背景下中国三大流域生态效率评价与影响因素研究.软科学, 2022, 36(1):91-97.(Tian Z, Pan J J, Ren F R, et al.Research on ecological efficiency evaluation and influencing factors of China's three major river basins under the background of great protection.Soft Science, 2022, 36(1):91-97.)
[2] 刘宏笪,王晓霞,张济建,等.中国省域空间单元绿色治理效率测度及其空间格局特征分析——基于广义面板三阶段DEA模型分析.中国环境科学, 2022, 42(3):1477-1488.(Liu H D, Wang X X, Zhang J J, et al.Measurement of green governance efficiency of China's provincial spatial units and analysis of its spatial pattern characteristics:Based on the analysis of the three-stage DEA model of the generalized panel.China Environmental Science, 2022, 42(3):1477-1488.)
[3] 戴前智,黄西蒙,周思怡,等.考虑DEA要素相关性的我国区域工业水-能-环境效率评价研究.系统科学与数学, 2021, 41(8):2234-2251.(Dai Q Z, Huang X M, Zhou S Y, et al.Measuring the water-energy-environmental DEA efficiency of China's regional industries considering the factor correlation.Journal of Systems Science and Mathematical Sciences, 2021, 41(8):2234-2251.)
[4] 王旭,王应明,温槟檐.技术异质性视角下中国工业能源环境效率时空演化及其驱动机制研究.系统科学与数学, 2020, 40(12):2297-2319.(Wang X, Wang Y M, Wen B Y.Spatial evolution and driving mechanism of China's industrial energy and environment efficiency from the perspective of technology heterogeneity.Journal of Systems Science and Mathematical Sciences, 2020, 40(12):2297-2319.)
[5] 李峰,朱平,梁樑[37],等.基于最近距离投影的DEA两阶段效率评价方法研究.中国管理科学, DOI:10.16381/j.cnki.issn1003-207x.2020.1617.(Li F, Zhu P, Liang L, et al.A two-stage DEA efficiency evaluation approach based on closest targets.Chinese Journal of Management Science, DOI:10.16381/j.cnki.issn1003-207x.2020.1617.)
[6] Briec W, Lesourd J B.Metric distance function and profit:Some duality results.Journal of Optimization Theory and Applications, 1999, 101:15-33.
[7] Fukuyama H, Maeda Y, Sekitani K, et al.Input-output substitutability and strongly monotonic p-norm least distance DEA measures.European Journal of Operational Research, 2014, 237(3):997-1007.
[8] Frei F X, Harker P T.Projections onto efficient frontiers:Theoretical and computational extensions to DEA.Journal of Productivity Analysis, 1999, 11:275-300.
[9] Lozano S, Villa G.Determining a sequence of targets in DEA.Journal of the Operational Research Society, 2005, 56(12):1439-1447.
[10] Aparicio J, Ruiz J L, Sirvent I.Closest targets and minimum distance to the Pareto-efficient frontier in DEA.Journal of Productivity Analysis, 2007, 28:209-218.
[11] Aparicio J, Pastor J T.Closest targets and strong monotonicity on the strongly efficient frontier in DEA.Omega, 2014, 44:51-57.
[12] Zhu Q Y, Wu J, Ji X, et al.A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity.Omega, 2018, 79:1-8.
[13] Cooper W W, Park K S, Pastor J T.RAM:A range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA.Journal of Productivity Analysis, 1999, 11:5-42.
[14] Yang L, Ouyang H, Fang K N, et al.Evaluation of regional environmental efficiencies in China based on super-efficiency-DEA.Ecological Indicators, 2015, 51:13-19.
[15] Wang Y M, Luo Y, Liang L.Ranking decision making units by imposing a minimum weight restriction in the data envelopment analysis.Journal of Computational and Applied Mathematics, 2009, 223(1):469-484.
[16] Wei F Q, Chu J F, Song J Y, et al.A cross-bargaining game approach for direction selection in the directional distance function.OR Spectrum, 2019, 41(3):787-807.
[17] Zhou P, Ang B W, Wang H.Energy and CO2 emission performance in electricity generation:A non-radial directional distance function approach.European Journal of Operational Research, 2012, 221(3):625-635.
[18] 陈磊,王应明.基于环境绩效视角的交叉效率评价方法.系统工程学报, 2016, 31(5):700-709.(Chen L, Wang Y M.Cross efficiency evaluation method based on environmental performance.Journal of Systems Engineering, 2016, 31(5):700-709.)
[19] Balk B M, De Koster M B M, Kaps C, et al.An evaluation of cross-efficiency methods:With an application to warehouse performance.Applied Mathematics and Computation, 2021, 406:126261.
[20] Liu Z C, Wu N Q, Qiao Y, et al.Performance evaluation of public bus transportation by using DEA models and Shannon's entropy:An example from a company in a large city of China.IEEE/CAA Journal of Automatica Sinica, 2021, 8(4):779-795.
[21] 徐林明,李美娟,欧忠辉,等.基于虚拟最劣解TOPSIS和灰关联度的动态评价方法.系统科学与数学, 2019, 39(3):365-377.(Xu L M, Li M J, Ou Z H, et al.Dynamic evaluation method based on virtual worst solution TOPSIS and gray correlation degree.Journal of Systems Science and Mathematical Sciences, 2019, 39(3):365-377.)
[22] 叶菲菲,王应明.大气污染区域合作治理策略选择:基于加权DEA的博弈分析.系统科学与数学, 2019, 39(1):37-50.(Ye F F, Wang Y M.Strategy selection of regional cooperative governance in air pollution:Game analysis based on weighted DEA.Journal of Systems Science and Mathematical Sciences, 2019, 39(1):37-50.)
[23] Zhang Q, Wang Y J, Zhang W, et al.Energy and resource conservation and air pollution abatement in China's iron and steel industry.Resources, Conservation and Recycling, 2019, 147:67-84.
[1] 熊贝贝, 邹雨晴, 安庆贤. 基于DEA的两阶段系统的利润无效率测量和分解[J]. 系统科学与数学, 2022, 42(4): 902-919.
[2] 蓝以信, 陈烺, 王应明. 考虑具有包容关系的结构异质系统中心化资源配置方法研究[J]. 系统科学与数学, 2021, 41(9): 2406-2424.
[3] 王旭, 王应明, 蓝以信, 温槟檐. 基于双前沿面数据包络分析的区间全局 Meta-frontier Malmquist 指数及其应用研究[J]. 系统科学与数学, 2021, 41(4): 1043-1067.
[4] 黄衍, 尤翠玲, 何霄. 考虑随机分布的中立型区间交叉效率研究[J]. 系统科学与数学, 2021, 41(12): 3517-3529.
[5] 曹倩,刘小弟,张世涛,吴健. 概率信息完全未知的概率犹豫模糊多属性决策方法[J]. 系统科学与数学, 2020, 40(7): 1242-1256.
[6] 王旭,王应明,温槟檐. 技术异质性视角下中国工业能源环境效率时空演化及其驱动机制研究[J]. 系统科学与数学, 2020, 40(12): 2297-2319.
[7] 叶菲菲,王应明. 大气污染区域合作治理策略选择:基于加权DEA的博弈分析[J]. 系统科学与数学, 2019, 39(1): 37-50.
[8] 陈磊,王应明. 基于前景理论的交叉效率集结方法[J]. 系统科学与数学, 2018, 38(11): 1307-1316.
[9] 鲁涛,王悦,马明. 基于网络~DEA 的共享投入与~(非) 期望产出的两部门并行系统的效率评价-----以中国道路运输业为例[J]. 系统科学与数学, 2017, 37(9): 1976-1987.
[10] 蓝以信,王旭,王应明. 区间型产出下的DEA-Malmquist 生产率指数及其应用研究[J]. 系统科学与数学, 2017, 37(6): 1494-1508.
[11] 蓝以信,王应明. 考虑决策者时间偏好的多时期综合效率评价[J]. 系统科学与数学, 2014, 34(3): 257-272.
[12] 蓝以信,王应明. 考虑决策者时间偏好的多时期综合效率评价[J]. 系统科学与数学, 2014, 34(3): 257-272.
阅读次数
全文


摘要