• • 上一篇    

基于事件触发的延时概率布尔网络的输出跟踪

陈昊东, 李露露, 胡博森   

  1. 合肥工业大学数学学院, 合肥 230009
  • 收稿日期:2022-03-02 修回日期:2022-04-23 发布日期:2022-11-04
  • 基金资助:
    国家自然科学基金(61503115),合肥工业大学国家级大学生创新创业项目(202110359074)资助课题.

陈昊东, 李露露, 胡博森. 基于事件触发的延时概率布尔网络的输出跟踪[J]. 系统科学与数学, 2022, 42(10): 2847-2858.

CHEN Haodong, LI Lulu, HU Bosen. Event-Based Output Tracking of Probabilistic Boolean Networks with Time Delay[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(10): 2847-2858.

Event-Based Output Tracking of Probabilistic Boolean Networks with Time Delay

CHEN Haodong, LI Lulu, HU Bosen   

  1. School of Mathematics, Hefei University of Technology, Hefei 230009
  • Received:2022-03-02 Revised:2022-04-23 Published:2022-11-04
文章主要研究在事件触发控制下带延时的概率布尔网络的输出跟踪问题.首先,利用矩阵半张量积的方法将带延时的概率布尔网络转换为代数形式.其次,分别讨论有/没有控制输入两种情况的延时概率布尔网络,基于代数形式和定义的一系列可达集,分别给出了在有限时间内输出跟踪问题以概率1有解的充要条件.再次,文章提出了设计事件触发控制器的算法.最后,通过一个算例来验证理论的正确性以及算法的有效性.
This paper mainly studies the output tracking problem of probabilistic Boolean networks (PBNs) with time delay under event-triggered control.Firstly,PBNs with time delay is transformed into its algebraic form by using the method of semi-tensor product of matrices.Secondly,the delayed PBNs without control input are discussed,respectively.Based on the algebraic expression of delayed PBNs and a series of construed reachable sets,the necessary and sufficient conditions for the system achieving output tracking in finite time with probability one are given.Thirdly,the algorithm of designing event-triggered controller is proposed in this paper.Finally,an example is given to verify the correctness of the theoretical results and the effectiveness of the algorithm.

MR(2010)主题分类: 

()
[1] Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 1969, 22(3):437-467.
[2] Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks:A Semitensor Product Approach. London:Springer, 2011.
[3] Wang S L, Li H T. New results on the disturbance decoupling of Boolean control networks. IEEE Control Syst. Lett., 2021, 5(4):1157-1162.
[4] Zhang X, Meng M, Wang Y H, et al. Criteria for observability and reconstructibility of Boolean control networks via set controllability. IEEE Trans. Circuits Syst. II:Express Briefs, 2021, 68(4):1263-1267.
[5] Toyoda M, Wu Y H. Maximum-likelihood state estimators in probabilistic Boolean control networks. IEEE Trans. on Cybern., DOI:10.1109/TCYB.2021.3127880.
[6] Zhong J, Yu Z X, Li Y Y, et al. State estimation for probabilistic Boolean networks via outputs observation. IEEE Trans. Neural Netw. Learning Syst., DOI:10.1109/TNNLS.2021.3059795.
[7] Fornasini E, Valcher M E. Optimal control of Boolean control networks. IEEE Trans. Automat. Contr., 2014, 59(5):1258-1270.
[8] Guo Y Q, Li Z T, Liu Y, et al. Asymptotical stability and stabilization of continuous-time probabilistic logic networks. IEEE Trans. Automat. Contr., 2022, 67(1):279-291.
[9] 胡鑫,黄迟.具有随机脉冲的布尔控制网络的集合稳定性研究.系统科学与数学, 2020, 40(4):587-598.(Hu X, Huang C. Set stabilization of Boolean control networks with stochastic impulse. Journal of Systems Science&Mathematical Sciences, 2020, 40(4):587-598.)
[10] 时胜男,徐勇,苏雪.网络演化知识博弈模型与算法.系统科学与数学, 2020, 40(3):423-433.(Shi S N, Xu Y, Su X. Networked evolutionary knowledge game model and algorithm. Journal of Systems Science&Mathematical Sciences, 2020, 40(3):423-433.)
[11] Li H T, Wang Y Z, Xie L H. Output tracking control of Boolean control networks via state feedback:Constant reference signal case. Automatica, 2015, 59:54-59.
[12] Li H T, Wang Y Z, Guo P L. State feedback based output tracking control of probabilistic Boolean networks. Information Sciences, 2016, 349-350:1-11.
[13] Ouyang C, Li L L, Li Y Y, et al. Asynchronous event-based set stabilization of logical control networks and its applications in finite-field networks. IEEE Trans. Control Netw. Syst., DOI:10.1109/TCNS.2021.3089133.
[14] Zhong J, Li Y, Lu J Q, et al. Pinning control for stabilization of Boolean networks under knockout perturbation. IEEE Trans. Automat. Contr., 2022, 67(3):1550-1557.
[15] Liu R J, Lu J Q, Zheng W X, et al. Output feedback control for set stabilization of Boolean control networks. IEEE Trans. Neural Netw. Learning Syst., 2020, 31(6):2129-2139.
[16] Wang Y H, Li H T. Output trackability of Boolean control networks via Ledley antecedence solution. IEEE Trans. Circuits Syst. II:Express Briefs, DOI:10.1109/TCSII.2021.3095487.
[17] Liu R J, Lu J Q, Liu Y, et al. Delayed feedback control for stabilization of Boolean control networks with state delay. IEEE Trans. Neural Netw. Learning Syst., 2018, 29(7):3283-3288.
[18] Zheng Y T, Li H T, Ding X Y, et al. Stabilization and set stabilization of delayed Boolean control networks based on trajectory stabilization. Journal of the Franklin Institute, 2017, 354(17):7812-7827.
[19] Ding X Y, Li H T, Wang S L. Set stability and synchronization of logical networks with probabilistic time delays. Journal of the Franklin Institute, 2018, 355(15):7735-7748.
[20] Lu J Q, Zhong J, Ho D W C, et al. On controllability of delayed Boolean control networks. SIAM J. Contr. Optim., 2016, 54(2):475-494.
[21] Zhang A G, Li L L, Lu J Q. Event-based output regulation of Boolean control networks with time delay. IEEE Trans. Circuits Syst. II:Express Briefs, 2021, 68(6):2007-2011.
[1] 沈宇桐, 徐勇. 概率布尔网络的牵制鲁棒镇定[J]. 系统科学与数学, 2022, 42(6): 1454-1466.
[2] 延卫军, 张利军, 毕冬瑶. A*算法的代数表示[J]. 系统科学与数学, 2022, 42(6): 1478-1489.
[3] 李睿,杨萌,楚天广. 概率布尔网络的集合镇定控制[J]. 系统科学与数学, 2016, 36(3): 371-380.
[4] 贾光钰,冯俊娥. 三种单节点摄动对混合值逻辑网络极限集的影响[J]. 系统科学与数学, 2016, 36(3): 426-436.
[5] 杜大军,漆波,费敏锐. 多通道异构网络诱导延时约束下网络化控制系统的量化控制研究[J]. 系统科学与数学, 2015, 35(4): 397-406.
[6] 程代展,刘挺,王元华. 博弈论中的矩阵方法[J]. 系统科学与数学, 2014, 34(11): 1291-1305.
[7] 程代展,齐洪胜. 矩阵半张量积的基本原理与适用领域[J]. 系统科学与数学, 2012, 32(12): 1488-1496.
[8] 程代展,赵寅,徐听听. 演化博弈与逻辑动态系统的优化控制[J]. 系统科学与数学, 2012, 32(10): 1226-1238.
[9] 毕卫萍, 张俊锋. 一类非线性上三角系统的实用输出跟踪控制[J]. 系统科学与数学, 2011, 31(7): 775-785.
阅读次数
全文


摘要