• • 上一篇    

不确定多通道信号鲁棒稳态估计

陶贵丽1, 李爽2, 王雪梅1, 刘文强2   

  1. 1. 浙江传媒学院媒体工程学院, 杭州 310018;
    2. 浙江工商大学信息与电子工程学院(萨塞克斯人工智能学院), 杭州 310018
  • 收稿日期:2022-03-22 修回日期:2022-05-05 发布日期:2022-11-04
  • 通讯作者: 刘文强,Email:lwq@zjgsu.edu.cn.
  • 基金资助:
    浙江省教育厅科研项目(Y202147323),黑龙江省自然科学基金项目(LH2019F035),国家自然科学基金项目(61803148),浙江省新型网络标准及应用技术重点实验室(2013E10012)资助课题.

陶贵丽, 李爽, 王雪梅, 刘文强. 不确定多通道信号鲁棒稳态估计[J]. 系统科学与数学, 2022, 42(10): 2794-2816.

TAO Guili, LI Shuang, WANG Xuemei, LIU Wenqiang. Robust Steady-State Estimation for Uncertain Multichannel Signal[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(10): 2794-2816.

Robust Steady-State Estimation for Uncertain Multichannel Signal

TAO Guili1, LI Shuang2, WANG Xuemei1, LIU Wenqiang2   

  1. 1. College of Media Engineering, Communication University of Zhejiang, Hangzhou 310018;
    2. School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Zhejiang Gongshang University, Hangzhou 310018
  • Received:2022-03-22 Revised:2022-05-05 Published:2022-11-04
对于一类具有随机参数矩阵、不确定噪声方差、一步随机时滞、丢包和丢失观测的多通道自回归(Autoregressive,AR)信号系统,文章研究其鲁棒稳态Kalman滤波问题.应用状态空间方法,增广方法和虚拟噪声技术,混合不确定AR信号模型被转换为仅带不确定噪声方差和相同过程以及观测噪声的状态空间模型.根据极大极小鲁棒估计原理,基于带不确定噪声方差保守上界的最坏情形系统,提出了鲁棒稳态Kalman一步和多步信号预报器.证明了所提出的信号预报器的鲁棒性,即对于所有容许的不确定性,信号预报器的实际稳态预报误差方差被保证有相应的最小上界.仿真例子验证了所提出方法的正确性和有效性.
This paper studies the robust steady-state Kalman filtering problem for a class of multichannel autoregressive (AR) signal with random parameter matrices,uncertain noise variances,one-step random delay,packet dropouts,and missing measurements.Using the state space method,augmented method,and the fictitious noise technique,the mixed uncertain AR signal model under study is converted into a state space model only with uncertain noise variances and same process and measurement noises.In the light of the minimax robust estimation principle,based on the worstcase system with conservative upper bounds of uncertain noise variances,the robust steady-state Kalman one-step and multi-step signal predictors are proposed.The robustness of the proposed signal predictors is proved,such that for all admissible uncertainties,the actual steady-state estimation error variances of signal predictors are guaranteed to have the corresponding minimal upper bounds.A simulation example verifies the correctness and effectiveness of the proposed methods.

MR(2010)主题分类: 

()
[1] Sun S L, Li X Y, Yan S W. Estimators for autoregressive moving average signals with multiple sensors of different missing measurement rates. IET Signal Process, 2012, 6(3):178-185.
[2] Liu W Q, Tao G L, Shen C. Robust measurement fusion steady-state estimator design for multisensor networked systems with random two-step transmission delays and missing measurements. Math. Comput. Simulat., 2021, 181:242-283.
[3] Anderson B D O, Moore J B. Optimal Filtering. New Jersey:Prentice Hall, 1979.
[4] Gao M, Hu J, Chen D Y, et al. Resilient state estimation for time-varying uncertain dynamical networks with data packet dropouts and switching topology:An event-triggered method. IET Control Theory Appl., 2020, 14(3):367-377.
[5] Chen B, Hu G Q. Nonlinear state estimation under bounded noises. Automatica, 2018, 98:159-168.
[6] Wang S Y, Wang Z D, Dong H L, et al. Recursive state estimation for linear systems with lossy measurements under time-correlated multiplicative noises. J. Frankl. Inst., 2020, 357:1887-1908.
[7] Wang S Y, Fang H J, Tian X G. Robust estimator design for networked uncertain systems with imperfect measurements and uncertain-covariance noises. Neurocomputing, 2017, 230:40-47.
[8] Liu W, Xie X P, Qian W, et al. Optimal linear filtering for networked control systems with random matrices, correlated noises, and packet dropouts. IEEE Access, 2020, 8:59987-59997.
[9] Liu W. Optimal filtering for discrete-time linear systems with time-correlated multiplicative measurement noises. IEEE Trans. Autom. Control, 2016, 61(7):1972-1978.
[10] Liu W Q, Wang X M, Deng Z L. Robust centralized and weighted measurement fusion Kalman estimators for uncertain multisensor systems with linearly correlated white noises. Inf. Fusion, 2017, 35:11-25.
[11] Liu W Q, Tao G L, Fan Y J, et al. Robust fusion steady-state filtering for multisensor networked systems with one-step random delay, missing measurements, and uncertain-variance multiplicative and additive white noises. Int. J. Robust Nonlinear Control, 2019, 29(14):4716-4754.
[12] Liu W Q, Deng Z L. Weighted fusion robust steady-state estimators for multisensor networked systems with one-step random delay and inconsecutive packet dropouts. Int J Adapt Control Signal Process, 2020, 34(2):151-182.
[13] Lewis F L, Xie L H, Popa D. Optimal and Robust Estimation:With an Introduction to Stochastic Control Theory. Second Edition. New York:CRC Press, 2008.
[14] Ma J, Sun S L. Optimal linear estimators for systems with random sensor delays, multiple packet dropouts and uncertain observations. IEEE Trans. Signal Process, 2011, 59(11):5181-5192.
[15] Ma J, Sun S L. Centralized fusion estimators for multisensor systems with random sensor delays, multiple packet dropouts and uncertain observations. IEEE Sensors J., 2013, 13(4):1228-1235.
[16] Li M Y, Zhang L, Chu D S. Optimal estimation for systems with multiplicative noises, random delays and multiple packet dropouts. IET Signal Process, 2016, 10(8):880-887.
[17] Ma J, Sun S L. Distributed fusion filter for networked stochastic uncertain systems with transmission delays and packet dropouts. Signal Process, 2017, 130:268-278.
[18] Chen B, Zhang W A, Hu G Q, et al. Networked fusion Kalman filtering with multiple uncertainties. IEEE Trans. Aerosp Electron Syst., 2015, 51(3):2332-2349.
[19] Caballero-Aguila R, Hermoso-Carazo A, Linares-Perez J. Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing. Signal Process, 2019, 156:71-83.
[20] Yang C S, Yang Z B, Deng Z L. Robust weighted state fusion Kalman estimators for networked systems with mixed uncertainties. Inf. Fusion, 2019, 45:246-265.
[21] Ran C J, Deng Z L. Robust integrated covariance intersection fusion Kalman estimators for networked systems with random measurement delays, multiplicative noises, and uncertain noise variances. Int J. Adapt. Control Signal Process, 2020, 34(11):1697-1725.
[22] Ran C J, Deng Z L. Robust fusion Kalman estimators for networked mixed uncertain systems with random one-step measurement delays, missing measurements, multiplicative noises and uncertain noise variances. Inf. Sci., 2020, 534:27-52.
[23] Qi W J, Zhang P, Demg Z L. Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances. Signal Process, 2014, 99:185-200.
[24] Li N, Sun S L, Ma J. Multi-sensor distributed fusion filtering for networked systems with different delay and loss rates. Digit. Signal Process, 2014, 34:29-38.
[25] Liu G M, Su W Z. Survey of linear discrete-time stochastic controls systems with multiplicative noises. Control Theory Appl., 2013, 30(8):929-946.
[26] Wang Z D, Ho D W C, Liu X H. Robust filtering under randomly varying sensor delay with variance constraints. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2004, 51(6):320-326.
[27] Kailath T, Sayed A H, Hassibi B. Linear Estimation. New Jersey:Prentice Hall, 2000.
[1] 魏瑶, 孙书利. 带多随机滞后和丢包网络化多传感器系统分布式递推融合估计[J]. 系统科学与数学, 2022, 42(2): 224-239.
[2] 刘文强, 李爽, 陶贵丽, 高志军, 沈忱. 网络化随机不确定系统鲁棒矩阵加权融合稳态估值器[J]. 系统科学与数学, 2021, 41(8): 2077-2100.
[3] 陶贵丽, 刘文强, 张兴华, 牛晓霞. 带丢包不确定广义系统鲁棒Kalman预报器[J]. 系统科学与数学, 2021, 41(5): 1215-1232.
[4] 刘安东,季鹏,张文安,俞立. 具有时延和乱序网络化系统的动态矩阵控制[J]. 系统科学与数学, 2017, 37(7): 1555-1565.
[5] 祁波,孙书利. 带未知通信干扰和丢包补偿的多传感器系统的融合估计[J]. 系统科学与数学, 2016, 36(8): 1094-1106.
[6] 王硕,禹梅,谭文. 具有丢包补偿网络化控制系统的量化反馈稳定性分析[J]. 系统科学与数学, 2015, 35(3): 287-297.
[7] 严川,禹梅,刘宇.  基于二阶邻居信息的高阶多智能体系统的一致性[J]. 系统科学与数学, 2015, 35(3): 327-341.
[8] 李娜,孙书利,马静. 具有丢失观测和网络传输滞后多通道系统的最优线性滤波[J]. 系统科学与数学, 2014, 34(10): 1252-1267.
阅读次数
全文


摘要