• •    

开源社区开发者协作网络关键人员群体识别研究

刘鹏, 马佳楠   

  1. 江苏科技大学经济管理学院, 镇江 212000)
  • 收稿日期:2022-05-13 修回日期:2022-06-28 发布日期:2022-11-04
  • 基金资助:
    国家自然科学基金(71871108)资助课题.

刘鹏, 马佳楠. 开源社区开发者协作网络关键人员群体识别研究[J]. 系统科学与数学, 2022, 42(10): 2566-2581.

LIU Peng, MA Jianan. Research on the Identification of Key Developer Groups in the Open Source Community Collaboration Network[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(10): 2566-2581.

Research on the Identification of Key Developer Groups in the Open Source Community Collaboration Network

LIU Peng, MA Jianan   

  1. School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212000
  • Received:2022-05-13 Revised:2022-06-28 Published:2022-11-04
开源社区中关键开发人员的退出会直接威胁到开源项目的可持续性,因此有效识别显著影响开发工作的关键开发人员和采取防范措施,能够促进社区集体智慧的涌现.文章对Vue和Angular开源项目进行分析,聚焦开发者的协作行为,提出了度量开发者协作行为差异性的连接系数指标,并将开发人员分为三类不同的群体和根据评价指标体系进行关键开发人员群体的识别.结果表明,文章所提出的指标明显优于已有的评价方法,当该指标所探查的关键开发人员群体间的合作行为失效时,协作网络遭受更大程度的破坏.此外,协作网络中的关键开发人员类型也包括一些度值较低和位于非中心位置的节点.这为协作网络的深入研究提供了新的视角.
The withdrawal of key developers in the open source community will directly threaten the sustainability of open source projects.Therefore,effectively identifying key developers who significantly affect the development work and taking preventive measures can promote the development of community collective wisdom.This paper analyzes Vue and Angular open source projects,focuses on the collaborative behavior of developers,proposes a connection coefficient index to measure the difference of collaborative behavior of developers,and divides developers into three groups and identifies key groups according to the evaluation index system.The results show that the index proposed in this paper is obviously superior to the existing evaluation methods,and the cooperative network suffers greater damage when the cooperative behaviors of the key developer groups detected by this index fail.In addition,key developer types in collaborative networks include nodes with low degree values and non-central locations.This provides a new perspective for further study of cooperative networks.

MR(2010)主题分类: 

()
[1] 陈光沛,魏江,李拓宇.开源社区:研究脉络、知识框架和研究展望.外国经济与管理, 2021, 43(2):84-102.(Chen G P, Wei J, Li T Y. Open source communities:Research context, knowledge framework, and research perspectives. Foreign Economics&Management, 2021, 43(2):84-102.)
[2] 王晓冬.我国开源软件产业面临的突出风险及对策研究.信息安全研究, 2021, 7(10):973-976.(Wang X D. Research on the prominent risks and countermeasures faced by China's open source software industry. Technical Applications, 2021, 7(10):973-976.)
[3] Rashid M, Clarke P M, O'Connor R V. A systematic examination of knowledge loss in open source software projects. International Journal of Information Management, 2019, 46:104-123.
[4] 卢冬冬,吴洁,刘鹏,等.开源软件社区知识协作网络核心开发者识别-以AngularJS为例.计算机工程与科学, 2021, 43(3):551-559.(Lu D D, Wu J, Liu P, et al. Identification of core developers of the open source software community knowledge collaboration network:Take AngularJS as an example. Computer Engineering&Science, 2021, 43(3):551-559.)
[5] Behfar S K, Turkina E, Burger-Helmchen T. Knowledge management in OSS communities:Relationship between dense and sparse network structures. International Journal of Information Management, 2018, 38(1):167-174.
[6] Newman M E. Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E:Statistical, Nonlinear&Soft Matter Physics, 2001, 38(1):016131
[7] 夏昊翔,张潇,张醒洲. OpenStack开源软件开发者协作网络分析.计算机工程与科学, 2017, 37(5):1373-1382.(Xia H X, Zhang X, Zhang X Z. Analysis of OpenStack OSS developers collaborate network. Computer Engineering&Science, 2017, 37(5):1373-1382.)
[8] 刘鹏,张鹏臣,王念新.开源软件社区开发者协作网络结构演化分析-以Cloud Foundry社区为例.复杂系统与复杂性科学, 2019, 16(4):31-43.(Liu P, Zhang P C, Wang N X. Analysis of the evolution of the collaborative network structure of developers in the open source software community:Take Cloud foundry as an example. Complex Systems and Complexity Science, 2019, 16(4):31-43.)
[9] Newman M E J. Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23):8577-8582.
[10] Borgatti S P, Everett M G. Models of core/periphery structures. Social Networks, 2000, 21(4):375-395.
[11] 何鹏,李兵,杨习辉,等.开源软件社区开发者偏好合作行为研究.计算机科学, 2015, 42(2):161-166.(He P, Li B, Yang X H, et al. Research on cooperative behavior among developers in the open source software community. Computer Science, 2015, 42(2):161-166.)
[12] Nicolas D. Socialization in an open source software community:A socio-technical analysis. Computer Supported Cooperative Work (CSCW), 2005, 14(4):323-368.
[13] 陈丹,王星,何鹏,等.开源社区中已有开发者的合作行为分析.计算机科学, 2016, 43(S1):476-501.(Chen D, Wang X, He P, et al. Analysis of cooperative behavior of existing developers in the open source community. Computer Science, 2016, 43(S1):476-501.)
[14] Howison C K. Assessing the health of open source communities. Computer, 2006, 39(5):89-91.
[15] Zhou H L, Zhang X D. Dynamic robustness of knowledge collaboration network of open source product development community. Physica A:Statistical Mechanics and Its Applications, 2018, 490:601-612.
[16] 徐冰村,张晓冬.开源社区中的意见领袖识别及跟随效应仿真.情报理论与实践, 2019, 42(12):101-107.(Xu B C, Zhang X D. Influencer identification and follow-up effect simulation in the open source community. Information Studies:Theory&Application, 2019, 42(12):101-107.)
[17] Bertolero M A, Yeo B T T, D'Esposito M. The diverse club. Nature Communications, 2017, 8(1):1-11.
[18] Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks. Journal of Statistical Mechanics:Theory and Experiment, 2008, 2008(10):1-12.
[19] Roger G, Nunes A L A. Cartography of complex networks:Modules and universal roles. Journal of Statistical Mechanics, 2005, 2005(P02001):1-17.
[20] Xu M Q, Pan Q, Muscoloni A, et al. Modular gateway-ness connectivity and structural core organization in maritime network science. Nature Communications, 2020, 11(1):1-15.
[21] Pvd H M, Olaf S. Rich-club organization of the human connectome. Nature Communications, 2011, 31(44):1575-1586.
[22] Bullmore E, Sporns O. The economy of brain network organization. Nature Reviews Neuroscience, 2012, 13(5):336-349.
[23] Cecile D, Angelo F, Lorenzo G, et al. Fast cluster-based computation of exact betweenness centrality in large graphs. Journal of Big Data, 2021, 8(1):1-12.
[24] Saqr M, Nouri J, Vartiainen H, et al. Robustness and rich clubs in collaborative learning groups:A learning analytics study using network science. Scientific Reports, 2020, 10(1):14445-14445.
[25] Alstott J, Panzarasa P, Rubinov M, et al. A unifying framework for measuring weighted rich clubs. Scientific Reports, 2014, 4(1):58-61.
[26] Latora V, Marchiori M. A measure of centrality based on network efficiency. New Journal of Physics, 2007, 9(6):188-209.
[1] 吴祯涛,李学仁,杜军,丁超. 多社团加权复杂网络建模及其级联抗毁性研究[J]. 系统科学与数学, 2019, 39(11): 1729-1740.
阅读次数
全文


摘要