• • 上一篇    

基于在线评论的新能源汽车销量影响因素研究

丁沛1,2, 马铁驹1, 马也1   

  1. 1. 华东理工大学商学院, 上海 200237;
    2. 南京大学商学院, 南京 210093
  • 收稿日期:2022-05-09 修回日期:2022-06-17 发布日期:2022-11-04
  • 基金资助:
    国家自然科学基金资助项目(72131007,72140006),中央高校基本科研业务费专项资金(JKN012022010)资助课题.

丁沛, 马铁驹, 马也. 基于在线评论的新能源汽车销量影响因素研究[J]. 系统科学与数学, 2022, 42(10): 2647-2664.

DING Pei, MA Tieju, MA Ye. Research on Influencing Factors of New Energy Vehicle Sales Based on Online Reviews[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(10): 2647-2664.

Research on Influencing Factors of New Energy Vehicle Sales Based on Online Reviews

DING Pei1,2, MA Tieju1, MA Ye1   

  1. 1. School of Business, East China University of Science and Technology, Shanghai 200237;
    2. School of Business, Nanjing University, Nanjing 210093
  • Received:2022-05-09 Revised:2022-06-17 Published:2022-11-04
新能源汽车的推广对中国保障能源安全与实现双碳目标具有积极意义.在内燃机车仍在中国汽车消费市场中占据主导地位的背景下,新能源汽车还需深入推广,其销量的影响因素有待进一步明确.文章使用网络爬虫技术获取有关新能源汽车的在线评论数据,以2021年在售的129款新能源汽车为研究样本,通过文本挖掘和实证分析来揭示在线评论中特定内容对新能源汽车推广的内在影响机理.研究的主要结论如下:1)评论特征中的评论数量、评论情感极性与评论点赞数将对车辆销量产生正面影响.2)新能源汽车在线评论中有关“噪音控制”、“加速性能”、“内燃机车”、“电池与充电基础设施”与“天气”的内容将对车辆销量产生显著影响.3)在线评论中“环保”、“电池与充电基础设施”、“科技感”、“加速性能”等内容对车辆销量的影响存在异质性.研究表明,新能源汽车在线评论中的特定内容将对新能源汽车销量产生显著影响,厂商应在进行评论口碑管理的同时,针对相应内容所反映的用户反馈优化自身的生产服务.
The promotion of new energy vehicles is of positive significance for China to maintain energy security and achieve goals of carbon peaking and carbon neutrality under the new development philosophy.However,fuel vehicles still hold a top post in China's automobile market.New energy vehicles still need to be further promoted,and the influencing factors of new energy vehicle sales remain to be determined.This study uses web crawler technology to obtain online review data about new energy vehicles.It takes 129 new energy vehicles on sale in 2021 as research samples to reveal the internal mechanism of the impact of specific content in online reviews on the promotion of new energy vehicles through text mining and empirical analysis.The study's main conclusions are as follows:1) The number of comments and the emotional polarity of comments will have a positive impact on vehicle sales.2) The contents of "noise control","acceleration performance", "fuel vehicles","battery performance and charging infrastructure"and "weather" in the online reviews of new energy vehicles will have a significant impact on energy vehicle sales.3) The influence of specific content in comments on vehicle sales is heterogeneous in vehicles of different manufacturers and energy types,and the impact of specific content in comments with different degrees of emotional polarity on vehicle sales is also heterogeneous.This study shows that the specific content in online reviews of new energy vehicles will significantly impact new energy vehicle sales.Manufacturers should improve their services according to the user feedback reflected in the related content in the online reviews while conducting online word-of-mouth management.

MR(2010)主题分类: 

()
[1] Li Y, Qi Z, Liu B, et al. Substitution effect of new-energy vehicle credit program and corporate average fuel consumption regulation for green-car subsidy. Energy, 2018, 152:223-236.
[2] Rezvani Z, Jansson J, Bodin J. Advances in consumer electric vehicle adoption research:A review and research agenda. Transport and Environment, 2015, 34:122-136.
[3] Coffinan M, Bernstein P, Wee S. Electric vehicles revisited:A review of factors that affect adoption. Transport Reviews, 2017, 37(1):79-93.
[4] Dellarocas C, Narayan R. A statistical measure of a population's propensity to engage in postpurchase online word-of-mouth. Statistical Science, 2006, 21(2):277-285.
[5] Mayzlin D, Chevalier J A. The effect of word of mouth on sales:Online book reviews. Journal of Marketing Research, 2006, 43(3):345-354.
[6] Chen P Y S, Wu S Y, Yoon J. The impact of online recommendations and consumer feedback on sales. Proceedings of the International Conference on Information Systems, ICIS 2004, December 12-15, 2004, Washington, DC, USA, 2004, 711-724.
[7] Chevalier J A, Mayzlin D. The effect of word of mouth on sales:Online book reviews. Journal of Marketing Research, 2006, 43(3):345-354.
[8] Duan W, Gu B, Whinston A B. The dynamics of online word-of-mouth and product sales-An empirical investigation of the movie industry. Journal of Retailing, 2008, 84(2):233-242.
[9] Qiu R, Whinston Q R. A twitter-based prediction market:Social network approach. SSRN Electronic Journal, 2011, 12(3):268-279.
[10] Han K. The effects of user reviews in online purchasing behavior across multiple product categories. Master's Final Project Report, 2007, 4(6):569-573.
[11] Weisstein F L, Song L, Andersen P, et al. Examining impacts of negative reviews and purchase goals on consumer purchase decision. Journal of Retailing and Consumer Services, 2017, 39(4):201-207.
[12] Ren J, Yeoh W, Ee M S, et al. Online consumer reviews and sales:Examining the chicken-egg relationships. Journal of the Association for Information Science and Technology, 2018, 69(3):449-460.
[13] Seegers V. Tried and tested:The impact of online hotel reviews on consumer consideration. Tourism Management, 2009, 30(1):123-127.
[14] Rui H, Liu Y, Whinston A. Whose and what chatter matters?The effect of tweets on movie sales. Decision Support Systems, 2013, 55(4):863-870.
[15] Chintagunta P K, Gopinath S, Venkataraman S. The effects of online user reviews on movie box office performance:Accounting for sequential rollout and aggregation across local markets. Marketing Science, 2010, 29(5):944-957.
[16] Clemons E, Gao G D, Hitt L. When online reviews meet hyper differentiation:A study of the craft beer industry. Journal of Management Information Systems, 2006, 23(2):149-171.
[17] Chintagunta P K, Gopinath S, Venkataraman S. The effects of online user reviews on movie box office performance:Accounting for sequential rollout and aggregation across local markets. Marketing Science, 2010, 29(5):944-957.
[18] Ye Q, Law R, Gu B, et al. The influence of user-generated content on traveler behavior:An empirical investigation on the effects of E-word-of-month to hotel online bookings. Computers in Human Behavior, 2011, 27(2):634-639.
[19] Li W, Long R, Chen H, et al. Effect of policy incentives on the uptake of electric vehicles in China. Sustain Ability, 2019, 11(12):1-20.
[20] Wang S, Li J, Zhao D. The impact of policy measures on consumer intention to adopt electric vehicles:Evidence from China. Transportation Research Part A:Policy and Practice, 2017, 105(C):14-26.
[21] Vergis S, Chen B. Comparison of plug-in electric vehicle adoption in the United States:A state by state approach. Research in Transportation Economics, 2015, 52(OCT):56-64.
[22] Simsekoglu Ö. Socio-demographic characteristics, psychological factors and knowledge related to electric car use:A comparison between electric and conventional car drivers. Transport Policy, 2018, 78(10):180-186.
[23] Lin B, Wu W. Why people want to buy electric vehicle:An empirical study in firstier cities of China. Energy Policy, 2018, 112:233-241.
[24] Jensen A F, Mabit S L. The use of electric vehicles:A case study on adding an electric car to a household. Transport. Res. Pol. Pract., 2017, 106(12):89-99.
[25] Li W, Long R, Chen H, et al. Effects of personal carbon trading on the decision to adopt battery electric vehicles:Analysis based on a choice experiment in Jiangsu, China. Appl. Energy, 2018, 209(1):478-488.
[26] Zhang L, Zhao Z, Xin H, et al. Charge pricing model for electric vehicle charging infrastructure public-private partnership projects in China:A system dynamics analysis. Clean. Prod., 2018, 199(2):321-333.
[27] Wang Z H, Zhao C Y, Yin J H, et al. Purchasing intentions of Chinese citizens on new energy vehicles:How should one respond to current preferential policy?. Journal of Cleaner Production, 2017, 161(10):1000-1010.
[28] Axsen J, Bailey J, Marisol A C. Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers. Energy Econ., 2015, 50:190-201.
[29] Clinton B C, Steinberg D C, Cole M A, et al. Providing the spark:Impact of financial incentives on battery electric vehicle adoption. Journal of Environmental Economics and Management, 2019, 98:1-18.
[30] Egnér F, Trosvik L. Electric vehicle adoption in Sweden and the impact of local policy instruments. Energy Policy, 2018, 121(10):584-586.
[31] Sierzchula W, Bakker S, Maat K, et al. The influence of financial incentives and other socioeconomic factors on electric vehicle adoption. Energy Policy, 2014, 68(5):183-194.
[32] Sheldon T L, Deshazo J R. How does the presence of HOV lanes affect plug-in electric vehicle adoption in California?A generalized propensity score approach. Journal of Environmental Economics&Management, 2017, 85(SEP):146-170.
[33] Austmann L M, Vigne S A. Does environmental awareness fuel the electric vehicle market?A Twitter keyword analysis. Energy Economics, 2021,(2):1-15.
[34] Zambrano-Gutierrez J C, Nicholson-Crotty S, Carley S, et al. The role of public policy in technology diffusion:The case of plug-in electric vehicles. Environmental Science and Technology, 2018, 52(19):10914-10922.
[35] Wei W, Cao M, Jiang Q, et al. What influences Chinese consumers'adoption of battery electric vehicles?A preliminary study based on factor analysis. Energies, 2020, 13(5):1-15.
[36] Kim E, Heo E. Key drivers behind the adoption of electric vehichle in Korea:An analysis of the revealed preferences. 2019, 11(23):1-15.
[37] Lane B, Potter S. The adoption of cleaner vehicles in the UK:Exploring the consumer attitudeaction gap. Journal of Cleaner Production, 2007, 15(11-12):1085-1092.
[1] 朱琴, 韩小花. 基于在线评论的制造商产品再制造与价格策略研究[J]. 系统科学与数学, 2022, 42(8): 2040-2061.
[2] 王春兰,甘旭升,李双峰,孟祥伟. 基于KSLPP特征提取的ELM模拟电路软故障诊断[J]. 系统科学与数学, 2020, 40(9): 1662-1671.
[3] 朱章鹏,陈长波. 基于机器学习的柱形代数分解变元择序[J]. 系统科学与数学, 2020, 40(8): 1492-1506.
[4] 崔春生,王雪,李文龙. 基于用户在线评论的旅游景点推荐算法研究[J]. 系统科学与数学, 2020, 40(6): 1103-1116.
[5] 郑小雪,李登峰,刘志,郑守红. 政府补贴新能源汽车的不同模式效果差异研究[J]. 系统科学与数学, 2020, 40(10): 1821-1835.
[6] 彭定洪,黄子航. 基于犹豫模糊层次TOPSIS的可持续平衡计分卡评价方法[J]. 系统科学与数学, 2019, 39(9): 1435-1449.
[7] 赵金楼,朱辉,刘馨. 基于改进TFIDF的图书馆知识群体特征提取研究[J]. 系统科学与数学, 2019, 39(9): 1450-1461.
[8] 吴迪,林国汉,胡慧,杜先君. 基于指数正则化零空间鉴别分析的故障识别[J]. 系统科学与数学, 2018, 38(10): 1128-1139.
[9] 王宇,王硕,谭民. 基于LSD的具有特定特征的三维物体轮廓提取算法[J]. 系统科学与数学, 2016, 36(9): 1410-1416.
[10] 孟月波,刘光辉,甘旭升. 具有特征提取的小波网络气动力模型[J]. 系统科学与数学, 2013, 33(5): 541-549.
[11] 孟洁;王惠文;黄海军;苏建宁. 基于样条变换的PLS回归的非线性结构分析[J]. 系统科学与数学, 2008, 28(2): 243-250.
阅读次数
全文


摘要