• • 上一篇    

具有分布式无限通信时延的多智能体系统的领导者-跟随者一致性研究:M-矩阵方法

邓娅1,2, 朱伟3   

  1. 1. 重庆邮电大学计算机科学与技术学院, 重庆 400065;
    2. 重庆移通学院, 重庆 401520;
    3. 重庆邮电大学复杂系统智能分析与决策重庆市高校重点实验室, 重庆 400065
  • 收稿日期:2020-10-09 修回日期:2021-06-27 发布日期:2022-07-29
  • 基金资助:
    国家自然科学基金项目(61673080),重庆市教育委员会科学技术研究项目(KJZD-K202000601),重庆市科技局英才计划项目(cstc2021ycjh-bgzxm0044)资助课题.

邓娅, 朱伟. 具有分布式无限通信时延的多智能体系统的领导者-跟随者一致性研究:M-矩阵方法[J]. 系统科学与数学, 2022, 42(6): 1467-1477.

DENG Ya, ZHU Wei. Leader-Following Consensus of Multi-Agent Systems with Distributed Infinite Transmission Time Delays: An M-Matrix Approach[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(6): 1467-1477.

Leader-Following Consensus of Multi-Agent Systems with Distributed Infinite Transmission Time Delays: An M-Matrix Approach

DENG Ya1,2, ZHU Wei3   

  1. 1. School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065;
    2. Chongqing College of Mobile Communication, Chongqing 401520;
    3. Key Laboratory of Intelligent Analysis and Decision on Complex Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065
  • Received:2020-10-09 Revised:2021-06-27 Published:2022-07-29
文章研究了一阶多智能体系统的领导者-跟随者一致性问题.在考虑跟随者之间具有无限通信时延的情形下,设计了相应的分布式控制协议.基于M-矩阵方法与不等式分析技巧,在假设智能体通信拓扑存在以领导者为根的生成树下,获得了多智能体系统达到领导者-跟随者一致性的充分条件.最后通过数值仿真验证了所获理论结果的有效性.
This paper investigates leader-following consensus problem of multi-agent systems described by single integrator. A distributed control protocol with infinite transmission time delays between neighboring followers is designed. Under the assumptions that the communication topology among agents has a spanning tree with the leader as the root, a sufficient condition on leader-following consensus is obtained by using an M-matrix approach and inequality techniques. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results.

MR(2010)主题分类: 

()
[1] Li K, Mu X.Necessary and sufficient conditions for leader-following consensus of multi-agent systems with random switching topologies.Nonlinear Anal.:Hybrid Syst., 2020, 37:100905.
[2] Liu D, Yang G H.A dynamic event-triggered control approach to leader-following consensus for linear multiagent systems.IEEE Trans.Syst.Man Cybern.:Syst., 2021, 51(10):6271-6279.
[3] You X, Hua C C, Yu H N, et al.Leader-following consensus for high-order stochastic multi-agent systems via dynamic output feedback control.Automatica, 2019, 107:418-424.
[4] Liu J, Yin T, Yue D, et al.Event-based secure leader-following consensus control for multi-agent systems with multiple cyber attacks.IEEE Trans.Cybern., 2021, 51(1):162-173.
[5] 何敏红,慕小武,胡增辉.具有随机不确定通讯连接和马氏切换拓扑的多自主体系统的鲁棒H领导跟踪一致性研究.系统科学与数学.2021, 41(3):589-601.(He M H, Mu X W, Hu Z H.Robust H leader-following consensus of multi-agent systems over Markovian switching topologies with randomly occurring uncertainties of communication links.Journal of Systems Science and Mathematical Sciences, 2021, 41(3):589-601.)
[6] Chen T T, Wang F Y, Xia C Y, et al.Leader-following consensus of second-order multi-agent systems with intermittent communication via persistent-hold control.Neurocomputing, 2022, 471:183-193.
[7] Liu K, Selivanov A, Fridman E.Survey on time-delay approach to networked control.Annu.Rev.Control, 2019, 48:57-79.
[8] Zhu W, Cheng D.Leader-following consensus of second-order agents with multiple time-varying delays.Automatica, 2010, 46(12):1994-1999.
[9] Zhu W, Jiang Z P.Event-based leader-following consensus of multi-agent systems with input time delay.IEEE Trans.Autom.Control, 2015, 60(5):1362-1367.
[10] Wang A, He H, Liao X.Event-triggered privacy-preserving average consensus for multi-agent networks with time delay:An output mask approach.IEEE Trans.Syst.Man Cybern.:Syst., 2021, 51(7):4520-4531.
[11] Ji L, Tong S, Li H.Dynamic group consensus for delayed heterogeneous multi-agent systems in cooperative-competitive networks via pinning control.Neurocomputing, 2021, 443:1-11.
[12] Deng C, Che W W, Wu Z G.A dynamic periodic event-triggered approach to consensus of heterogeneous linear multiagent systems with time-varying communication delays.IEEE Trans.Cybern., 2021, 51(4):1812-1821.
[13] Wang Z.Consensus of continuous-time agent dynamics with unknown input and communication delays.Appl.Math.Comput., 2022, 412(4):126563.
[14] Ali N, Zaman G.Asymptotic behavior of HIV-1 epidemic model with infinite distributed intracellular delays.Springer Plus, 2016, 5(1):324.
[15] Morărescu C I, Fioravanti A R, Niculescu S I, et al.Stability crossing curves of linear systems with shifted fractional γ-distributed delays.IFAC Proc.Volumes, 2009, 42(14):173-177.
[16] Michiels W, Morărescu C I, Niculescu S I.Consensus problems with distributed delays, with application to traffic flow models.SIAM J.Control Optimi., 2009, 48(1):77-101.
[17] Sipahi R, Atay F M, Niculescu S I.Stability of traffic flow behavior with distributed delays modeling the memory effects of the drivers.SIAM J.Control Optimi., 2007, 68(3):738-759.
[18] Atay F M.Distributed delays facilitate amplitude death of coupled oscillators.Phys.Rev.Lett., 2003, 91(9):094101.
[19] Wei T, Xie X, Li X.Input-to-state stability of delayed reaction-diffusion neural networks with multiple impulses.AIMS Math., 2021, 6(6):5786-5800.
[20] Wang L, Ge M F, Hu J, et al.Global stability and stabilization for inertial memristive neural networks with unbounded distributed delays.Nonlinear Dyn., 2019, 95:943-955.
[21] Wu Z G, Shi P, Su H, et al.Reliable H control for discrete-time fuzzy systems with infinitedistributed delays.IEEE Trans.Fuzzy Syst., 2012, 20(1):22-31.
[22] Zhou Q, Xu X, Liu L, et al.Output feedback stabilization of linear systems with infinite distributed input and output delays.Inf.Sci., 2021, 576:54-67.
[23] Stamova I, Stamov G.Impulsive control strategy for the Mittag-Leffler synchronization of fractional-order neural networks with mixed bounded and unbounded delays.AIMS Math., 2021, 6(3):2287-2303.
[24] Xu X, Liu L, Feng G.Consensus of single integrator multi-agent systems with distributed infinite transmission delays.2018 Annu.Am.Control Conf.(ACC), 2018, 1653-1658.
[25] Xu X, Liu L, Feng G.Consensus of single integrator multi-agent systems with unbounded transmission delays.201713th IEEE Int.Conf.Control Autom.(ICCA), 2017, 554-558.
[26] Xu X, Liu L, Feng G.Consensus of linear multi-agent systems with distributed infinite transmission delays:A low gain approach.IEEE Trans.Autom.Control, 2020, 65(2):809-816.
[27] Xu D, Zhu W, Long S.Global exponential stability of impulsive integro-differential equation.Nonlinear Anal.-Theory Methods Appl., 2006, 64(12):2805-2816.
[28] Berezansky L, Braverman E.On nonoscillation and stability for systems of differential equations with a distributed delay.Automatica, 2012, 48(4):612-618.
[29] Wang H, Tan J, Huang T, et al.Impulsive delayed integro-differential inequality and its application on IMNNs with discrete and distributed delays.Neurocomputing, 2019, 341:99-106.
[30] Song Q, Liu F, Cao J, et al.M-matrix strategies for pinning-controlled leader-following consensus in multiagent systems with nonlinear dynamics.IEEE Trans.Cybern., 2013, 43(6):1688-1697.
[31] Wen G, Hu G, Yu W, et al.Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs.Syst.Control Lett., 2013, 62(12):1151-1158.
[32] Li H.Leader-following consensus of nonlinear multi-agent systems with mixed delays and uncertain parameters via adaptive pinning intermittent control.Nonlinear Anal.:Hybrid Syst., 2016, 22:202-214.
[33] Sui X, Yang Y, Zhang S.Leader-following consensus of multi-agent systems with randomly varying nonlinearities and stochastic disturbances under directed switching topologies.Physica A, 2019, 525:524-534.
[34] Horn R A, Johnson C R.Topics in Matrix Analysis.Cambridge:Cambridge Univ.Press, 1991.
[35] Bapat R B, Raghavan T E S.Nonnegative Matrices and Applications.Cambridge:Cambridge Univ.Press, 1997.
[1] 蒋方翠. 具有非对称通信时滞和切换拓扑的高阶多智能体系统的一致性[J]. 系统科学与数学, 2015, 35(3): 258-269.
[2] 张园,孙明玮,陈增强,袁著祉. 基于扩张状态观测器的广义预测控制[J]. 系统科学与数学, 2014, 34(11): 1366-1378.
[3] 金继东;郑毓蕃. 有向网络下多个体系统的整体行为[J]. 系统科学与数学, 2011, 31(1): 114-122.
[4] 高彦平;高存臣. 状态与输出均有滞后的不确定广义系统的非脆弱$H_\infty$控制[J]. 系统科学与数学, 2008, 28(3): 350-359.
阅读次数
全文


摘要