• 论文 • 上一篇    下一篇

基于状态势博弈的电力系统分布式经济调度方法

梁易乐,刘锋,梅生伟   

  1. 清华大学电机系电力系统国家重点实验室,北京 100084
  • 出版日期:2016-03-25 发布日期:2016-03-24

梁易乐,刘锋,梅生伟. 基于状态势博弈的电力系统分布式经济调度方法[J]. 系统科学与数学, 2016, 36(3): 413-425.

LIANG Yile, LIU Feng,MEI Shengwei. A STATE-BASED POTENTIAL GAME APPROACH FOR DISTRIBUTED ECONOMIC DISPATCH[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(3): 413-425.

A STATE-BASED POTENTIAL GAME APPROACH FOR DISTRIBUTED ECONOMIC DISPATCH

LIANG Yile, LIU Feng ,MEI Shengwei   

  1. State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084
  • Online:2016-03-25 Published:2016-03-24

未来电网中出现的主要变革之一在于电力系统电源结构的变化,分布式能源发电设备的广泛接入给传统调度与控制框架带来了严峻挑战.电力系统尤其是主动配电网中,调度控制体系的去中心化成为一种趋势.状态势博弈理论为电力系统分布式调度与控制体系的构建提供了一个良好框架.文章基于状态势博弈理论,给出了分布式电力系统经济调度的一般设计方法.该方法能够兼顾全网功率平衡约束与网络传输功率限制,同时实现主体间通信量极小化,因而具有较强的算法鲁棒性与实际应用价值.通过IEEE 9节点标准系统的仿真分析验证了所提方法的有效性及正确性.

One of the main revolutions of the future power gird is the change of power source structure. The wide-spread integration of distributed energy resources bring severe challenges to the traditional dispatch and control framework. Cetre-free dispatch and control mechanism has become a trend for power system, especially active distribution network. State based potential game provieds a proper framework for establishing this mechanism. This paper studies a general design approach for distributed economic dispatch, which could not only tackle both the power balance constraint and power flow transfer limits, but also entail low communication and exchanged information, therefore it possesses robustness to the environment uncertainties and has values for engineering applications. Numerical studies based on IEEE 9 bus system has been verified the correctness and effectiveness of this approach.

MR(2010)主题分类: 

()
[1] 梁易乐,黄少伟,张星,田芳,魏韡,刘峰,梅生伟. 基于主从博弈的碳排放税制定方法[J]. 系统科学与数学, 2016, 36(8): 1055-1067.
[2] 王龙,杜金铭. 多智能体协调控制的演化博弈方法[J]. 系统科学与数学, 2016, 36(3): 302-318.
[3] 梅生伟,魏韡. 智能电网环境下主从博弈模型及应用实例[J]. 系统科学与数学, 2014, 34(11): 1331-1344.
[4] 杨哲,蒲勇健. 单主多从博弈中中级社会Nash均衡的存在性与应用[J]. 系统科学与数学, 2013, 33(7): 777-784.
[5] 蒲勇健,杨哲. 多目标大博弈中弱Pareto-Berge均衡的存在性[J]. 系统科学与数学, 2012, 32(1): 70-78.
[6] 杨哲,蒲勇健. 广义不确定下广义多目标博弈弱Pareto-Nash均衡点集的存在性与本质连通区[J]. 系统科学与数学, 2011, 31(12): 1613-1621.
[7] 俞建. n人非合作博弈的轻微利他平衡点[J]. 系统科学与数学, 2011, 31(5): 534-539.
[8] 杨哲;蒲勇健. 大博弈中Nash均衡的存在性[J]. 系统科学与数学, 2010, 30(12): 1606-1612.
[9] 蒲勇健;杨哲. 轻微利他弱Pareto-Nash均衡[J]. 系统科学与数学, 2010, 30(9): 1259-1266.
阅读次数
全文


摘要