• 论文 • 上一篇    下一篇

污染环境下毒素脉冲输入和心理效应对随机捕食-食饵系统的影响

蓝桂杰,陈哲文,魏春金,张树文   

  1. 集美大学理学院,厦门 361021
  • 出版日期:2019-12-25 发布日期:2020-03-20

蓝桂杰,陈哲文,魏春金,张树文. 污染环境下毒素脉冲输入和心理效应对随机捕食-食饵系统的影响[J]. 系统科学与数学, 2019, 39(12): 2070-2092.

LAN Guijie,CHEN Zhewen, WEI Chunjin,ZHANG Shuwen. The Effects of Impulsive Toxicant Input and Psychological Effect on Stochastic Predator-Prey Systems in a Polluted Environment[J]. Journal of Systems Science and Mathematical Sciences, 2019, 39(12): 2070-2092.

The Effects of Impulsive Toxicant Input and Psychological Effect on Stochastic Predator-Prey Systems in a Polluted Environment

LAN Guijie ,CHEN Zhewen, WEI Chunjin ,ZHANG Shuwen   

  1. School of Sciences, Jimei University, Xiamen 361021
  • Online:2019-12-25 Published:2020-03-20

文章研究了在污染环境下毒素脉冲输入和心理效应对随机捕食-食饵系统的影响.通过构造~Lyapunov~函数,证明了系统全局正解的存在性;利用随机微分方程比较定理得到系统平均持续生存与灭绝的充分条件;应用~Has'minskii~定理证明了系统至少存在一个非平凡的正周期解,并给出了数值模拟.

This paper investigates the effects of impulsive toxicant input and psychological effect on stochastic predator-prey systems in a polluted environment. The authors firstly obtain that the system admits unique positive global solution starting from the positive initial value by choosing a suitable Lyapunov function. Then, by comparison theorem for stochastic differential equation, sufficient conditions for extinction and persistence in mean are obtained. On the other hand, the authors prove that there exists at least one nontrivial positive periodic solution according to the theory of Has'minskii. Finally, some numerical simulations are introduced to illustrate the theoretical result.

()
[1] 郭嘉宾,陈玉福. 四维线性微分系统下三角反射矩阵的存在与计算[J]. 系统科学与数学, 2017, 37(10): 2052-2069.
[2] 李晓静,周友明,陈绚青,鲁世平. 一类带${\bm p}$-Laplace算子的高阶Rayleigh型泛函微分方程周期解存在性问题[J]. 系统科学与数学, 2013, 33(3): 362-372.
[3] 冯孝周;吴建华. 具有饱和与竞争项的捕食系统的全局分歧及稳定性[J]. 系统科学与数学, 2010, 30(7): 979-989.
[4] 徐国明;贾建文. 一类具有非线性扩散和时滞的捕食系统的持续性与周期解[J]. 系统科学与数学, 2010, 30(4): 515-529.
[5] 郑冬梅;鲁世平. 一类二阶泛函微分方程的多重周期解[J]. 系统科学与数学, 2010, 30(3): 370-378.
[6] 王立娟. 一类具有多偏差变元的Lienard系统的反周期解[J]. 系统科学与数学, 2010, 30(12): 1643-1650.
[7] 李晓静;鲁世平. 一类非线性项前系数可变号的高阶Duffing方程的周期解存在性问题[J]. 系统科学与数学, 2009, 29(8): 1079-1087.
[8] 李晓静;鲁世平. 具偏差变元的高阶泛函微分方程的周期解存在性问题[J]. 系统科学与数学, 2009, 29(3): 367-377.
[9] 庞国萍;陈兰荪. 具饱和传染率的脉冲免疫接种SIRS模型[J]. 系统科学与数学, 2007, 27(4): 563-572.
[10] 周正新;俞元洪. 非线性微分系统的Poincare映射与周期解[J]. 系统科学与数学, 2006, 26(1): 59-068.
阅读次数
全文


摘要