• 论文 •

### 考虑主体心理行为的一对多双边匹配决策方法

1. 1. 中国刑事警察学院治安学系,沈阳 110035; 2. 沈阳工程学院经济与管理学院,沈阳 110136
• 出版日期:2020-12-25 发布日期:2021-01-11

XIAO Hanqiang, ZHAO Yang. Decision Analysis Method for One-to-Many Two-Sided Matching Considering Psychological Behavior of Agents[J]. Journal of Systems Science and Mathematical Sciences, 2020, 40(11): 2071-2081.

### Decision Analysis Method for One-to-Many Two-Sided Matching Considering Psychological Behavior of Agents

XIAO Hanqiang1 ,ZHAO Yang2

1. 1. Department of Public Order, Criminal Investigation Police University of China, Shenyang 110035; 2. School of Economics and Management, Shenyang Institute of Engineering, Shenyang 110136
• Online:2020-12-25 Published:2021-01-11

One-to-many two-sided matching problem has a wide practical background in reality. On the premise of ensuring the satisfaction degrees of agents on both sides and the interests of intermediary, how to propose an appropriate one-to-many matching decision method is worth studying. A new decision method is proposed to solve the one-to-many two-sided matching problem with the preference ordinal number information. Firstly, the concepts of one-to-many two-sided matching and complete matching on side A side B and both sides are introduced. Then, the description of one-to-many two-sided matching problem with preference ordinal number information is given. Furthermore, to obtain the matching result, the prospect values between agents are calculated based on prospect theory of behavioral decision theory. And on this basis, for maximizing the sum of prospect value of agents on each side, a two-objective optimization model is constructed. The optimal complete matching result on side A (or side B) can be obtained by solving the model. Finally, an example is given to illustrate the practicality and effectiveness of the proposed method.

()
 [1] 潘晓宏, 王应明. 区间二型模糊前景理论方法及其在多属性决策中的应用[J]. 系统科学与数学, 2021, 41(6): 1533-1547. [2] 曲国华, 许岩, 曲卫华, 张强. 基于区间对偶犹豫模糊信息双向投影技术的双边公平匹配决策方法[J]. 系统科学与数学, 2021, 41(5): 1256-1275. [3] 李美娟, 卢锦呈, 蔡猷花. 基于前景理论的毕达哥拉斯模糊有序加权距离TOPSIS法[J]. 系统科学与数学, 2021, 41(5): 1291-1304. [4] 马艳芳, 赵媛媛, 冯翠英, 李宗敏. 多粒度概率语言TODIM方法在垃圾回收APP评价中的应用[J]. 系统科学与数学, 2021, 41(12): 3530-3547. [5] 王宗润，吴丝晴. 基于感知收益-风险比分析的结构性产品投资决策[J]. 系统科学与数学, 2019, 39(7): 1098-1116. [6] 田丽君，吕成锐，黄海军. 基于出行时间区间数和参考点的择路行为研究[J]. 系统科学与数学, 2018, 38(4): 395-405. [7] 管世恒，王安民. 多服务台排队系统下提高顾客等待满意度的两类排队管理策略[J]. 系统科学与数学, 2017, 37(4): 1100-1113. [8] 张亚杰，王应明，陈圣群. 基于前景理论和证据推理的双边匹配决策方法[J]. 系统科学与数学, 2017, 37(3): 768-780. [9] 王霞. 基于灰色前景关联的多属性决策模型[J]. 系统科学与数学, 2017, 37(3): 810-818. [10] 陈振颂，李延来，CHEN Kwai-Sang. 基于二型直觉三角前景T2ITFNHA算子的多准则群决策方法[J]. 系统科学与数学, 2016, 36(8): 1226-1254. [11] 郑晶，王应明，蓝以信. 考虑决策者心理行为的多时期应急决策方法[J]. 系统科学与数学, 2015, 35(5): 545-555. [12] 乐琦. 基于累积前景理论的具有不确定偏好序信息的双边匹配决策方法[J]. 系统科学与数学, 2013, 33(9): 1061-1070. [13] 乐琦. 基于前景理论的相同无差异区间型多指标匹配决策方法[J]. 系统科学与数学, 2013, 33(12): 1447-1455.