蒋望东, 章月红, 刘伟
蒋望东, 章月红, 刘伟. 分数阶变时滞惯性Cohen-Grossberg神经网络Mittag-Leffler稳定和渐近$\omega$-周期[J]. 系统科学与数学, 2022, 42(4): 867-885.
JIANG Wangdong, ZHANG Yuehong, LIU Wei. Global Mittag-Leffler Stability and Global Asymptotic ω-Period for a Class of Fractional-Order Cohen-Grossberg Inertial Neural Networks with Time-Varying Delays[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 867-885.
JIANG Wangdong, ZHANG Yuehong, LIU Wei
[1] Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett., 2003, 91(3):34101.[1] Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett., 2003, 91(3):34101. 884[7 s 542 o [2] Shen J, Lam J. Non-existence of finite-time stable equilibria in fractional-order nonlinear systems. Automatica, 2014, 50:547-551. [3] Hilfer R. Applications of Fractional Calculus in Physics. New Jersey:World Scientific, 2001. [4] Anastasio T J. The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biological Cybernetics, 1994, 72(1):69-79. [5] Boroomand A, Menhaj M B. Fractional-Order Hopfield Neural Networks. International Conference on Neural Information Processing, Berlin, Heidelberg:Springer, 2008. [6] Ke Y, Miao C. Mittag-Leffler stability of fractional-order Lorenz and Lorenz-family systems. Nonlinear Dynamics, 2016, 83(3):1237-1246. [7] Chen J, Chen B, Zeng Z. Global asymptotic stability and adaptive ultimate Mittag-Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays. IEEE Transactions on Systems Man Cybernetics-Systems, 2019, 4(12):2519-2535. [8] Xu C, Li P. On finite-time stability for fractional-order neural networks with proportional delays. Neural Processing Letters, 2019, 50(2):1241-1256. [9] Li J, Wu Z, Huang N. Asymptotical stability of Riemann-Liouville fractional-order neutral-type delayed projective neural networks. Neural Processing Letters, 2019, 50(1):565-579. [10] Wan P, Jian J. Global Mittag-Leffler boundedness for fractional-order complex-valued CohenGrossberg neural networks. Neural Processing Letters, 2019, 49(1):121-139. [11] Chang W, Zhu S, Li J. Global Mittag-Leffler stabilization of fractional-order complex-valued memristive neural networks. Applied Mathematics and Computation, 2018, 283:346-362. [12] Yang X, Li C, Song Q. Global Mittag-Leffler stability and synchronization analysis of fractionalorder quaternion-valued neural networks with linear threshold neurons. Neural Networks, 2018, 105:88-103. [13] Rajivganthi C, Rihan F A, Lakshmanan S. Finite-time stability analysis for fractional-order Cohen-Grossberg BAM neural networks with time delays. Neural Computing and Applications, 2018, 29(12):1309-1320. [14] Zhang X, Niu P, Ma Y. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition. Neural Networks, 2017, 94:67-75. [15] Chen B, Chen J. Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks. Neural. Netw., 2015, 68:78-88. [16] Wu A L, Zeng Z G. Boundedness, Mittag-Leffler stability and asymptotical ω-periodicity of fractional-order fuzzy neural networks. Neural. Netw., 2016, 74:73-84. [17] Qu H Z, Zhang T, Zhou J. Global stability analysis of S-asymptotically ω-periodic oscillation in fractional-order cellular neural networks with time variable delays. Neurocomputing, 2020, 399:390-398. [18] Zhou F, Ma C. Mittag-Leffler stability and global asymptotically ω-periodicity of fractional-order BAM neural networks with time-varying delays. Neural Process Lett., 2018, 47:71-98. [19] Wan L, Wu A. Multiple Mittag-Leffler stability and locally asymptotical ω-periodicity for fractional-order neural networks. Neurocomputin, 2018, 315:272-282. [20] Badcock K L, Westervelt R M. Dynamics of simple electronic neural networks. Physica D, 1987, 28:305-316. [21] Mauro A, Conti F, Dodge F. Subthreshold behavior and phenomenological impedance of the squid giant axon. The Journal of General Physical, 1970, 55(4):497-523. [22] Angelaki D E, Correia M J. Models of membrane resonance in pigeon semicircular canal type II hair cells. Biol. Cybernet, 1991, 65(1):1-10. [23] Zhang J, Huang C. Dynamics analysis on a class of delayed neural networks involving inertial terms. Advances in Difference Equations, 2020, 2020:1-12. [24] Ke Y, Miao C. Anti-periodic solutions of inertial neural networks with time delays. Neural Process Lett., 2017, 45:523-538. [25] Zhang G, Hu J, Zeng Z. New criteria on global stabilization of delayed memristive neural networks with inertial item. IEEE Transactions on Cybernetics, 2020, 50(6):2770-2780. [26] Wan P, Jian J. Global convergence analysis of impulsive inertial neural networks with timevarying delays. Neurocomputing, 2017, 245:68-76. [27] Duan L, Jian J, Wang B. Global exponential dissipativity of neutral-type BAM inertial neural networks with mixed time-varying delays. Neurocomputing, 2020, 378:399-412. [28] Tu Z, Cao J, Hayat T. Global exponential stability in Lagrange sense for inertial neural networks with time-varying delays. Neurocomputing, 2016, 171:524-531. [29] Ke Y, Miao C. Stability analysis of BAM neural networks with inertial term and time delay. WSEAS Transaction on System, 2011, 10(12):425-438. [30] Ke Y, Miao C. Stability and existence of periodic solutions in inertial BAM neural networks with time delay. Neural Computations and Applications, 2013, 23:1089-1099. [31] Xu C, Zhang Q. Existence and global exponential stability of anti-periodic solutions for BAM neural networks with inertial term and delay. Neurocomputing, 2015, 153:108-116. [32] Huang T, Tan J, Li C, et al. Exponential stability of inertial BAM neural networks with timevarying delay via periodically intermittent control. Neural Computing and Applications, 2015, 26(7):1781-1787. [33] Yong K, Xiang J. Existence and global exponential stability of anti-periodic solution for Cliffordvalued inertial Cohen-Grossberg neural networks with delays. Neurocomputing, 2019, 332:259-269. [34] Ke Y, Miao C. Stability analysis of inertial Cohen-Grossberg-type neural networks with time delays. Neurocomputing, 2013, 117(1):196-205. [35] Ke Y, Miao C. Exponential stability of periodic solutions for inertial Cohen-Grossberg-type neural networks. Neural Network World, 2014, 4:377-394. [36] 分数阶,惯性, Cohen-Grossberg神经网络,全局\Mittag-Leffler稳定,全局渐近$\omega$-周期31(4):428-440.(Tian X H, Xu R, Wang Z L. Global exponential stability and Hopf bifurcation of inertial CohenGrossberg neural networks with time delays in leakage terms. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4):428-440.) [37] Huang Q, Cao J. Stability analysis of inertial Cohen-Grossberg neural networks with Markovian jumping parameters. Neurocomputing, 2018, 282:89-97. [38] 谷亚娟.基于忆阻器的分数阶神经网络的控制研究.博士论文,北京交通大学,北京, 2021.(Gu Y J. Research on stability and control of fractional-order memristor-based neural networks. Doctoral Dissertation, Beijing Jiaotong University, Beijing, 2021.) [39] Ke L. Mittag-Leffler stability and asymptotic ω-periodicity of fractional-order inertial neural networks with time-delays. Neurocomputing, 2021, 465:53-62. [40] Gu Y, Wang H, Yu Y. Stability and synchronization for Riemann-Liouville fractional-order timedelayed inertial neural networks. Neurocomputing, 2019, 340:270-280. [41] 李金梅. Caputo分数阶惯性忆阻神经网络的全局\Mittag-Leffler同步.电子技术与软件工程, 2020, 22:63-65.(Li J M. Global Mittag-Leffler synchronization of Caputo fractional-order inertial memristor neural network. Electronic Technology and Software Engineering, 2020, 22:63-65.) [42] 张磊,王荣林.控制工程基础.西安:西安电子科技大学出版, 2016.(Zhang L, Wang R. Fundamentals of Control Engineering. Xi'an:Xidian University Press, 2016.) [43] 陈明,安庆龙,刘志强.高速切削技术基础与应用.上海:上海科学技术出版社, 2012.(Chen M, An Q L, Liu Z Q. Foundation and Application of High Speed Cutting Technology. Shanghai:Shanghai Science and Technology Press, 2012.) [44] Kilbas A A, Srivastava H M, Trajillo J J, et al. Theory and Application of Fractional Differential Equations. Amsterdam:Elsevier, 2006. [45] Podlubny I. Fractional Differential Equations. New York:Academic Press, 1999. [46] Henrlquez H R, Pierri M, Tboas P. On S-asymptotically ω-periodic functions on Banach spaces and applications. J. Math Anal. Appl., 2008, 343:1119-1130. |
[1] | 田洪乔, 张志信, 蒋威. 分数阶退化时滞微分系统的有限时间镇定性问题[J]. 系统科学与数学, 2021, 41(11): 3000-3007. |
[2] | 王冬妮,翟金刚,冯恩民. 一类连续发酵的分数阶建模及参数辨识[J]. 系统科学与数学, 2020, 40(9): 1517-1530. |
[3] | 陆文星,戴一茹,李楚,李克卿. 基于改进PSO-BP神经网络的旅游客流量预测方法[J]. 系统科学与数学, 2020, 40(8): 1407-1419. |
[4] | 严波,贺少波. Conformable分数阶单机无穷大电力系统分岔与混沌研究[J]. 系统科学与数学, 2020, 40(6): 954-968. |
[5] | 黄家才,施昕昕,崔磊,李宏胜,向峥嵘. 永磁同步电机复合型变阶次积分滑模控制研究[J]. 系统科学与数学, 2014, 34(7): 780-791. |
[6] | 郭丽敏,张兴秋. 穷区间上带有积分边值分数阶微分方程的多个正解的存在性[J]. 系统科学与数学, 2014, 34(6): 752-762. |
[7] | 吕恒金,冯育强,童评. 一类带时滞的无限区间分数阶变分问题[J]. 系统科学与数学, 2014, 34(5): 612-619. |
[8] | 陆心怡,张兴秋,王林. 一类分数阶微分方程$\bm m$点边值问题正解的存在性[J]. 系统科学与数学, 2014, 34(2): 218-230. |
[9] | 许晓婕,胡卫敏. 一个新的分数阶微分方程边值问题正解的存在性结果[J]. 系统科学与数学, 2012, 32(5): 580-590. |
[10] | 王妍. 多涡旋混沌同步和分数阶混沌同步[J]. 系统科学与数学, 2011, 31(12): 1641-1651. |
[11] | 莫嘉琪;温朝晖. 一类非线性奇摄动分数阶微分方程的渐近解[J]. 系统科学与数学, 2010, 30(12): 1689-1694. |
[12] | 过榴晓;徐振源;张荣. 非线性发展方程的Holder连续惯性流形[J]. 系统科学与数学, 2009, 29(12): 1631-1643. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||