Previous Articles Next Articles
LI Li, JI Pengcheng, GONG Wei, ZHAO Hui, XU Jia, YU Qingyun
LI Li, JI Pengcheng, GONG Wei, ZHAO Hui, XU Jia, YU Qingyun. Survey on NearCritical Analysis and Control of Complex Systems[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(6): 14231437.
[1] Ott E.Chaos in Dynamic Systems.Cambridge:Cambridge University Press, 2002. [2] Solé R V, Manrubia C S, Luque B, et al.Phase transitions and complex systems:Simple, nonlinear models capture complex systems at the edge of chaos.Complexity, 1996, 1(4):1326. [3] Bak P.How Nature Works:The Science of SelfOrganized Criticality.Berlin:Springer Science and Business Media, 2013. [4] Khajehabdollahi S, Abeyasinghe P M, Owen A M, et al.The emergence of integrated information, complexity, and consciousness at criticality.Cold Spring Harbor Laboratory, 2019, DOI:10.1101/521587. [5] Chialvo D R, Cannas S A, Grigera T S, et al.Controlling a complex system near its critical point via temporal correlations.Scientific Reports, 2020, 10(1):17. [6] Pruessner G.SelfOrganised Criticality:Theory, Models and Characterisation.Cambridge:Cambridge University Press, 2012. [7] Huang Z G, Dong J Q, Huang L, et al.Universal fluxfluctuation law in small systems.Scientific Reports, 2014, 4(1):17. [8] Manna S S.Twostate model of selforganized criticality.Journal of Physics A:Mathematical and General, 1991, 24(7):L363L369. [9] Jensen H J.Selforganized criticality:Emergent complex behavior in physical and biological systems.Physics Today, 1999, 52(10):7678. [10] Zapperi S, Lauritsen K B, Stanley H E.Selforganized branching processes:A meanfield theory for avalanches.Physical Review Letters, 1995, 75(22):40714074. [11] Christensen K, Moloney N R.Complexity and Criticality.Singapore:World Scientific Publishing Company, 2005. [12] Sornette A, Sornette D.Selforganized criticality and earthquakes.Europhysics Letters, 1989, 9(3):197200. [13] Malamud B D, Morein G, Turcotte D L.Forest fires:An example of selforganized critical behavior.Science, 1998, 281(5384):18401842. [14] Stozer A, Markovic R, Dolensek J, et al.Heterogeneity and delayed activation as hallmarks of selforganization and criticality in excitable tissue.Frontiers in Physiology, 2019, 10, DOI:10.3389/fphys.2019.00869. [15] Mitchell M.Complexity:A Guided Tour.Oxford:Oxford University Press, 2009. [16] Friedman D.Hidden Order.New York:HarperBusiness, 1997. [17] Kaplan D, Glass L.Understanding Nonlinear Dynamics.Berlin:Springer Science and Business Media, 1997. [18] Thompson J M T, Stewart H B.Nonlinear Dynamics and Chaos.Hoboken:John Wiley and Sons, 2002. [19] Roli A, Villani M, Filisetti A, et al.Dynamical criticality:Overview and open questions.Journal of Systems Science and Complexity, 2018, 31(3):647663. [20] Vicsek T, Czirók A, BenJacob E, et al.Novel type of phase transition in a system of selfdriven particles.Physical Review Letters, 1995, 75(6), DOI:10.1103/PhysRevLett.75.1226. [21] Trujillo L T.Kth nearest neighbor (KNN) entropy estimates of complexity and integration from ongoing and stimulusevoked electroencephalographic (EEG) recordings of the human brain.Entropy, 2019, 21(1), DOI:10.3390/e21010061. [22] Zhou X, Ma N, Song B, et al.Optimal organization of functional connectivity networks for segregation and integration with largescale critical dynamics in human brains.Frontiers in Computational Neuroscience, 2021, 15:641335. [23] Georgopoulou D, King A, Brown R, et al.Emergence and repeatability of leadership and coordinated motion in fish shoals.Behavioral Ecology, 2021, 33(1):4754. [24] Haimovici A, Tagliazucchi E, Balenzuela P, et al.Brain organization into resting state networks emerges at criticality on a model of the human connectome.Physical Review Letters, 2013, 110(17):178101. [25] Vohryzek J, Deco G, Cessac B, et al.Ghost attractors in spontaneous brain activity:Recurrent excursions into functionallyrelevant BOLD phaselocking states.Frontiers in Systems Neuroscience, 2020, 14, DOI:10.3389/fnsys.2020.00020. [26] Heffern E F W, Huelskamp H, Bahar S, et al.Phase transitions in biology:From bird flocks to population dynamics.Proceedings of the Royal Society B, 2021, 288(1961):20211111. [27] Tadic B, Andjelkovic M, Suvakov M.Origin of hyperbolicity in braintobrain coordination networks.Frontiers in Physics, 2018, 6, DOI:10.3389/fphy.2018.00007. [28] Carreras B A, ReynoldsBarredo J M, Dobson I, et al.Critical behavior of power transmission network complex dynamics in the OPA model.Chaos:An Interdisciplinary Journal of Nonlinear Science, 2019, 29(3):033103. [29] Cuvakov M, Andjelkovic M, Tadic B.Hidden geometries in networks arising from cooperative selfassembly.Scientific Reports, 2018, 8(1):110. [30] Bai Y, Huang Y, Xie G, et al.Asdys:Dynamic scheduling using active strategies for multifunctional mixedcriticality cyberphysical systems.IEEE Transactions on Industrial Informatics, 2020, 17(8):51755184. [31] Bilbao A, Yarza I, Montero J L, et al.A railway safety and security concept for lowpower mixedcriticality systems.2017 IEEE 15th International Conference on Industrial Informatics (INDIN) IEEE, 2017, 5964. [32] Huttlin E L, Bruckner R J, Paulo J A, et al.Architecture of the human interactome defines protein communities and disease networks.Nature, 2017, 545(7655):505509. [33] Solé R V, Miramontes O.Information at the edge of chaos in fluid neural networks.Physica D:Nonlinear Phenomena, 1995, 80(12):171180. [34] Ramo P, Kauffman S, Kesseli J, et al.Measures for information propagation in Boolean networks.Physica D:Nonlinear Phenomena, 2007, 227(1):100104. [35] Beekman M, Sumpter D J T, Ratnieks F L W.Phase transition between disordered and ordered foraging in Pharaoh's ants.Proceedings of the National Academy of Sciences, 2001, 98(17):97039706. [36] Buhl J, Sumpter D J T, Couzin I D, et al.From disorder to order in marching locusts.Science, 2006, 312(5778):14021406. [37] Jiang J, Hastings A, Lai Y C.Harnessing tipping points in complex ecological networks.Journal of the Royal Society Interface, 2019, 16(158):20190345. [38] Sun X, Wandelt S, Cao X.On node criticality in air transportation networks.Networks and Spatial Economics, 2017, 17(3):737761. [39] Hochstetter J, Zhu R, Loeffler A, et al.Avalanches and edgeofchaos learning in neuromorphic nanowire networks.Nature Communications, 2021, 12(1):113. [40] Boedecker J, Obst O, Lizier J T, et al.Information processing in echo state networks at the edge of chaos.Theory in Biosciences, 2012, 131(3):205213. [41] Snaselova P, Zboril F.Genetic algorithm using theory of chaos.Procedia Computer Science, 2015, 51(1):316325. [42] Liu B, Wang L, Jin Y H, et al.Improved particle swarm optimization combined with chaos.Chaos, Solitons and Fractals, 2005, 25(5):12611271. [43] EstevezRams E, EstevezMoya D, GarciaMedina K, et al.Computational capabilities at the edge of chaos for one dimensional systems undergoing continuous transitions.Chaos:An Interdisciplinary Journal of Nonlinear Science, 2019, 29(4):043105. [44] Boettcher S, Paczuski M.Exact results for spatiotemporal correlations in a selforganized critical model of punctuated equilibrium.Physical Review Letters, 1996, 76(3), DOI:10.1103/PhysRevLett.76.348. [45] Zhou Z, Huang Z G, Huang L, et al.Universality of fluxfluctuation law in complex dynamical systems.Physical Review E, 2013, 87(1):012808. [46] Rinaldo A, RodriguezIturbe I, Rigon R, et al.Selforganized fractal river networks.Physical Review Letters, 1993, 70(6), DOI:10.1103/PhysRevLett.70.822. [47] Katsnelson M I, Vanchurin V, Westerhout T.Selforganized criticality in neural networks, 2021, arXiv:2107.03402. [48] Sneppen K, Bak P, Flyvbjerg H, et al.Evolution as a selforganized critical phenomenon.Proceedings of the National Academy of Sciences, 1995, 92(11):52095213. [49] Prigogine I, Nicolis G.SelfOrganisation in Nonequilibrium Systems:Towards a Dynamics of Complexity.Dordrecht:Springer, 1985. [50] Packard N H.Adaptation toward the edge of chaos.Complexity in Biological Modelling, 1988, 212:293301. [51] Crutchfield J P, Young K.Computation at the onset of chaos.Santa Fe Institute Westview, 1990, 16(4):749755. [52] Carreras B A, Newman D E, Dobson I, et al.Evidence for selforganized criticality in a time series of electric power system blackouts.IEEE Transactions on Circuits and Systems I:Regular Papers, 2004, 51(9):17331740. [53] Frisch U, Hasslacher B, Pomeau Y.Latticegas automata for the NavierStokes equation.Physical Review Letters, 1986, 56(14), DOI:10.1103/PhysRevLett.56.1505. [54] Kari J.Theory of cellular automata:A survey.Theoretical Computer Science, 2005, 334(13):333. [55] Vrghese N V, Azim A, Mahmoud Q H.A FeatureBased machine learning approach for mixedcriticality systems.202122nd IEEE International Conference on Industrial Technology (ICIT) IEEE, 2021, 699704. [56] Zhang H, Liu L.Intelligent control of swarm robotics employing biomimetic deep learning.Machines, 2021, 9(10):236. [57] Tabassum S, Pereira F S F, Fernandes S, et al.Social network analysis:An overview.Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2018, 8(5):e1256. [58] Choudhury S, Dutta A, Ray D.Chaos and complexity from quantum neural network.A study with diffusion metric in machine learning.Journal of High Energy Physics, 2021, 2021(4):133. [59] Bertschinger N, Natschlager T.Realtime computation at the edge of chaos in recurrent neural networks.Neural computation, 2004, 16(7):14131436. [60] Balakrishnan H N, Kathpalia A, Saha S, et al.ChaosNet:A chaos based artificial neural network architecture for classification.Chaos:An Interdisciplinary Journal of Nonlinear Science, 2019, 29(11):113125. [61] Langton C G.Computation at the edge of chaos:Phase transitions and emergent computation.Physica D:Nonlinear Phenomena, 1990, 42(13):1237. [62] Serrano M A, Boguná M.Percolation and epidemic thresholds in clustered networks.Physical Review Letters, 2006, 97(8):088701. [63] Cohen R, BenAvraham D, Havlin S.Percolation critical exponents in scalefree networks.Physical Review E, 2002, 66(3):036113. [64] Rozenfeld H D, Makse H A.Fractality and the percolation transition in complex networks.Chemical Engineering Science, 2009, 64(22):45724575. [65] Radicchi F, Fortunato S.Explosive percolation:A numerical analysis.Physical Review E, 2010, 81(3):036110. [66] Francis T B, Abbott K C, Cuddington K, et al.Management implications of long transients in ecological systems.Nature Ecology and Evolution, 2021, 5(3):285294. [67] Meng Y, Lai Y C, Grebogi C.Tipping point and noiseinduced transients in ecological networks.Journal of the Royal Society Interface, 2020, 17(171):20200645. [68] ErcseyRavasz M, Toroczkai Z.Optimization hardness as transient chaos in an analog approach to constraint satisfaction.Nature Physics, 2011, 7(12):966970. [69] Morozov A, Abbott K, Cuddington K, et al.Long transients in ecology:Theory and applications.Physics of Life Reviews, 2020, 32:140. [70] Hastings A, Abbott K C, Cuddington K, et al.Effects of stochasticity on the length and behaviour of ecological transients.Journal of the Royal Society Interface, 2021, 18(180):20210257. [71] Wang S, Liu W, Lu H, et al.Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications.International Journal of Modern Physics B, 2004, 18(17n19):26172622. [72] Meng Y, Jiang J, Grebogi C, et al.Noiseenabled species recovery in the aftermath of a tipping point.Physical Review E, 2020, 101(1):012206. [73] Maturana M I, Meisel C, Dell K, et al.Critical slowing down as a biomarker for seizure susceptibility.Nature Communications, 2020, 11(1):112. [74] Drake J M, Griffen B D.Early warning signals of extinction in deteriorating environments.Nature, 2010, 467(7314):456459. [75] Dai L, Vorselen D, Korolev K S, et al.Generic indicators for loss of resilience before a tipping point leading to population collapse.Science, 2012, 336(6085):11751177. [76] Fan H, Jiang J, Zhang C, et al.Longterm prediction of chaotic systems with machine learning.Physical Review Research, 2020, 2(1):012080. [77] Kong L W, Fan H, Grebogi C, et al.Emergence of transient chaos and intermittency in machine learning.Journal of Physics:Complexity, 2021, 2(3):035014. [78] Xiao R, Kong L W, Sun Z, et al.Predicting amplitude death with machine learning.Physical Review E, 2021, 104(1):014205. [79] Kong L W, Fan H W, Grebogi C, et al.Machine learning prediction of critical transition and system collapse.Physical Review Research, 2021, 3(1):013090. [80] Ni Q, Tang M, Liu Y, et al.Machine learning dynamical phase transitions in complex networks.Physical Review E, 2019, 100(5):052312. [81] Jiang J, Lai Y C.Modelfree prediction of spatiotemporal dynamical systems with recurrent neural networks:Role of network spectral radius.Physical Review Research, 2019, 1(3):033056. [82] Su W, Chen G, Hong Y.Noise leads to quasiconsensus of HegselmannKrause opinion dynamics.Automatica, 2017, 85:448454. [83] Meng Y, Grebogi C.Control of tipping points in stochastic mutualistic complex networks.Chaos:An Interdisciplinary Journal of Nonlinear Science, 2021, 31(2):023118. [84] Farazmand M.Mitigation of tipping point transitions by timedelay feedback control.Chaos:An Interdisciplinary Journal of Nonlinear Science, 2020, 30(1):013149. [85] Ma J, Guo Z.The parameter basin and complex of dynamic game with estimation and twostage consideration.Applied Mathematics and Computation, 2014, 248:131142. [86] Attanasi A, Cavagna A, Del Castello L, et al.Finitesize scaling as a way to probe nearcriticality in natural swarms.Physical Review Letters, 2014, 113(23):238102. [87] Askar S S.Duopolistic Stackelberg game:Investigation of complex dynamics and chaos control.Operational Research, 2020, 20(3):16851699. [88] Klamser P P, Romanczuk P.Collective predator evasion:Putting the criticality hypothesis to the test.PLoS Computational Biology, 2021, 17(3):121. 
[1]  ZHANG Jindai. MemoryTraitDriven Refined Oil Price Forecasting [J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(5): 13001313. 
[2]  GONG Yicheng, WANG Xiaojie, ZOU Yiming. Dynamic Risk Decision of Intelligent Medical Insurance Based on Reservoir Sampling and Its Application [J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(4): 802817. 
Viewed  
Full text 


Abstract 

